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3. Determinants and Diagonalization
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With each square matrix we can calculate a number, called the determinant of the matrix, which
tells us whether or not the matrix is invertible. In fact, determinants can be used to give a formula
for the inverse of a matrix. They also arise in calculating certain numbers (called eigenvalues)
associated with the matrix. These eigenvalues are essential to a technique called diagonalization
that is used in many applications where it is desired to predict the future behaviour of a system.
For example, we use it to predict whether a species will become extinct.

Determinants were first studied by Leibnitz in 1696, and the term “determinant” was first used in
1801 by Gauss is his Disquisitiones Arithmeticae. Determinants are much older than matrices (which
were introduced by Cayley in 1878) and were used extensively in the eighteenth and nineteenth
centuries, primarily because of their significance in geometry (see Section 4.4). Although they are
somewhat less important today, determinants still play a role in the theory and application of matrix
algebra.
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148 Determinants and Diagonalization

3.1 The Cofactor Expansion

In Section 2.4 we defined the determinant of a 2×2 matrix A =

[
a b
c d

]
as follows:1

det A =

∣∣∣∣ a b
c d

∣∣∣∣= ad −bc

and showed (in Example 2.4.4) that A has an inverse if and only if det A 6= 0. One objective of this
chapter is to do this for any square matrix A. There is no difficulty for 1×1 matrices: If A = [a],
we define det A = det [a] = a and note that A is invertible if and only if a 6= 0.

If A is 3×3 and invertible, we look for a suitable definition of det A by trying to carry A to the
identity matrix by row operations. The first column is not zero (A is invertible); suppose the (1,
1)-entry a is not zero. Then row operations give

A =

 a b c
d e f
g h i

→

 a b c
ad ae a f
ag ah ai

→

 a b c
0 ae−bd a f − cd
0 ah−bg ai− cg

=

 a b c
0 u a f − cd
0 v ai− cg


where u = ae− bd and v = ah− bg. Since A is invertible, one of u and v is nonzero (by Example
2.4.11); suppose that u 6= 0. Then the reduction proceeds

A →

 a b c
0 u a f − cd
0 v ai− cg

→

 a b c
0 u a f − cd
0 uv u(ai− cg)

→

 a b c
0 u a f − cd
0 0 w


where w = u(ai− cg)− v(a f − cd) = a(aei+b f g+ cdh− ceg−a f h−bdi). We define

det A = aei+b f g+ cdh− ceg−a f h−bdi (3.1)

and observe that det A 6= 0 because a det A = w 6= 0 (is invertible).
To motivate the definition below, collect the terms in Equation 3.1 involving the entries a, b,

and c in row 1 of A:

det A =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣= aei+b f g+ cdh− ceg−a f h−bdi

= a(ei− f h)−b(di− f g)+ c(dh− eg)

= a
∣∣∣∣ e f

h i

∣∣∣∣−b
∣∣∣∣ d f

g i

∣∣∣∣+ c
∣∣∣∣ d e

g h

∣∣∣∣
This last expression can be described as follows: To compute the determinant of a 3× 3 matrix
A, multiply each entry in row 1 by a sign times the determinant of the 2× 2 matrix obtained by
deleting the row and column of that entry, and add the results. The signs alternate down row 1,
starting with +. It is this observation that we generalize below.

1Determinants are commonly written |A|= det A using vertical bars. We will use both notations.
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Example 3.1.1

det

 2 3 7
−4 0 6

1 5 0

= 2
∣∣∣∣ 0 6

5 0

∣∣∣∣−3
∣∣∣∣ −4 6

1 0

∣∣∣∣+7
∣∣∣∣ −4 0

1 5

∣∣∣∣
= 2(−30)−3(−6)+7(−20)
=−182

This suggests an inductive method of defining the determinant of any square matrix in terms of
determinants of matrices one size smaller. The idea is to define determinants of 3×3 matrices in
terms of determinants of 2×2 matrices, then we do 4×4 matrices in terms of 3×3 matrices, and
so on.

To describe this, we need some terminology.

Definition 3.1 Cofactors of a Matrix
Assume that determinants of (n−1)× (n−1) matrices have been defined. Given the n×n
matrix A, let

Ai j denote the (n−1)× (n−1) matrix obtained from A by deleting row i and column j.

Then the (i, j)-cofactor ci j(A) is the scalar defined by

ci j(A) = (−1)i+ j det (Ai j)

Here (−1)i+ j is called the sign of the (i, j)-position.

The sign of a position is clearly 1 or −1, and the following diagram is useful for remembering it:
+ − + − ·· ·
− + − + · · ·
+ − + − ·· ·
− + − + · · ·
... ... ... ...


Note that the signs alternate along each row and column with + in the upper left corner.

Example 3.1.2

Find the cofactors of positions (1, 2), (3, 1), and (2, 3) in the following matrix.

A =

 3 −1 6
5 2 7
8 9 4
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Solution. Here A12 is the matrix
[

5 7
8 4

]
that remains when row 1 and column 2 are

deleted. The sign of position (1, 2) is (−1)1+2 =−1 (this is also the (1, 2)-entry in the sign
diagram), so the (1, 2)-cofactor is

c12(A) = (−1)1+2
∣∣∣∣ 5 7

8 4

∣∣∣∣= (−1)(5 ·4−7 ·8) = (−1)(−36) = 36

Turning to position (3, 1), we find

c31(A) = (−1)3+1A31 = (−1)3+1
∣∣∣∣ −1 6

2 7

∣∣∣∣= (+1)(−7−12) =−19

Finally, the (2, 3)-cofactor is

c23(A) = (−1)2+3A23 = (−1)2+3
∣∣∣∣ 3 −1

8 9

∣∣∣∣= (−1)(27+8) =−35

Clearly other cofactors can be found—there are nine in all, one for each position in the
matrix.

We can now define det A for any square matrix A

Definition 3.2 Cofactor expansion of a Matrix

Assume that determinants of (n−1)× (n−1) matrices have been defined. If A =
[
ai j

]
is

n×n define
det A = a11c11(A)+a12c12(A)+ · · ·+a1nc1n(A)

This is called the cofactor expansion of det A along row 1.

It asserts that det A can be computed by multiplying the entries of row 1 by the corresponding
cofactors, and adding the results. The astonishing thing is that det A can be computed by taking
the cofactor expansion along any row or column: Simply multiply each entry of that row or column
by the corresponding cofactor and add.

Theorem 3.1.1: Cofactor Expansion Theorem2

The determinant of an n×n matrix A can be computed by using the cofactor expansion
along any row or column of A. That is det A can be computed by multiplying each entry of
the row or column by the corresponding cofactor and adding the results.

The proof will be given in Section ??.

2The cofactor expansion is due to Pierre Simon de Laplace (1749–1827), who discovered it in 1772 as part of
a study of linear differential equations. Laplace is primarily remembered for his work in astronomy and applied
mathematics.
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Example 3.1.3

Compute the determinant of A =

 3 4 5
1 7 2
9 8 −6

.

Solution. The cofactor expansion along the first row is as follows:

det A = 3c11(A)+4c12(A)+5c13(A)

= 3
∣∣∣∣ 7 2

8 −6

∣∣∣∣−4
∣∣∣∣ 1 2

9 −6

∣∣∣∣+3
∣∣∣∣ 1 7

9 8

∣∣∣∣
= 3(−58)−4(−24)+5(−55)
=−353

Note that the signs alternate along the row (indeed along any row or column). Now we
compute det A by expanding along the first column.

det A = 3c11(A)+1c21(A)+9c31(A)

= 3
∣∣∣∣ 7 2

8 −6

∣∣∣∣− ∣∣∣∣ 4 5
8 −6

∣∣∣∣+9
∣∣∣∣ 4 5

7 2

∣∣∣∣
= 3(−58)− (−64)+9(−27)
=−353

The reader is invited to verify that det A can be computed by expanding along any other
row or column.

The fact that the cofactor expansion along any row or column of a matrix A always gives the
same result (the determinant of A) is remarkable, to say the least. The choice of a particular row
or column can simplify the calculation.

Example 3.1.4

Compute det A where A =


3 0 0 0
5 1 2 0
2 6 0 −1

−6 3 1 0

.

Solution. The first choice we must make is which row or column to use in the cofactor
expansion. The expansion involves multiplying entries by cofactors, so the work is
minimized when the row or column contains as many zero entries as possible. Row 1 is a
best choice in this matrix (column 4 would do as well), and the expansion is

det A = 3c11(A)+0c12(A)+0c13(A)+0c14(A)

= 3

∣∣∣∣∣∣
1 2 0
6 0 −1
3 1 0

∣∣∣∣∣∣
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This is the first stage of the calculation, and we have succeeded in expressing the
determinant of the 4×4 matrix A in terms of the determinant of a 3×3 matrix. The next
stage involves this 3×3 matrix. Again, we can use any row or column for the cofactor
expansion. The third column is preferred (with two zeros), so

det A = 3
(

0
∣∣∣∣ 6 0

3 1

∣∣∣∣− (−1)
∣∣∣∣ 1 2

3 1

∣∣∣∣+0
∣∣∣∣ 1 2

6 0

∣∣∣∣)
= 3[0+1(−5)+0]
=−15

This completes the calculation.

Computing the determinant of a matrix A can be tedious. For example, if A is a 4×4 matrix,
the cofactor expansion along any row or column involves calculating four cofactors, each of which
involves the determinant of a 3×3 matrix. And if A is 5×5, the expansion involves five determinants
of 4×4 matrices! There is a clear need for some techniques to cut down the work.3

The motivation for the method is the observation (see Example 3.1.4) that calculating a deter-
minant is simplified a great deal when a row or column consists mostly of zeros. (In fact, when a
row or column consists entirely of zeros, the determinant is zero—simply expand along that row or
column.)

Recall next that one method of creating zeros in a matrix is to apply elementary row operations
to it. Hence, a natural question to ask is what effect such a row operation has on the determinant of
the matrix. It turns out that the effect is easy to determine and that elementary column operations
can be used in the same way. These observations lead to a technique for evaluating determinants
that greatly reduces the labour involved. The necessary information is given in Theorem 3.1.2.

Theorem 3.1.2
Let A denote an n×n matrix.

1. If A has a row or column of zeros, det A = 0.

2. If two distinct rows (or columns) of A are interchanged, the determinant of the
resulting matrix is − det A.

3. If a row (or column) of A is multiplied by a constant u, the determinant of the
resulting matrix is u(det A).

4. If two distinct rows (or columns) of A are identical, det A = 0.

3If A =

 a b c
d e f
g h i

 we can calculate det A by considering

 a b c a b
d e f d e
g h i g h

 obtained from A by adjoining

columns 1 and 2 on the right. Then det A = aei+b f g+cdh−ceg−a f h−bdi, where the positive terms aei, b f g, and
cdh are the products down and to the right starting at a, b, and c, and the negative terms ceg, a f h, and bdi are the
products down and to the left starting at c, a, and b. Warning: This rule does not apply to n×n matrices where
n > 3 or n = 2.
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5. If a multiple of one row of A is added to a different row (or if a multiple of a column is
added to a different column), the determinant of the resulting matrix is det A.

Proof. We prove properties 2, 4, and 5 and leave the rest as exercises.
Property 2. If A is n×n, this follows by induction on n. If n = 2, the verification is left to the

reader. If n > 2 and two rows are interchanged, let B denote the resulting matrix. Expand det A
and det B along a row other than the two that were interchanged. The entries in this row are the
same for both A and B, but the cofactors in B are the negatives of those in A (by induction) because
the corresponding (n−1)× (n−1) matrices have two rows interchanged. Hence, det B =− det A, as
required. A similar argument works if two columns are interchanged.

Property 4. If two rows of A are equal, let B be the matrix obtained by interchanging them.
Then B = A, so det B = detA. But det B =− det A by property 2, so det A = det B = 0. Again, the
same argument works for columns.

Property 5. Let B be obtained from A =
[
ai j

]
by adding u times row p to row q. Then row q of

B is

(aq1 +uap1, aq2 +uap2, . . . , aqn +uapn)

The cofactors of these elements in B are the same as in A (they do not involve row q): in symbols,
cq j(B) = cq j(A) for each j. Hence, expanding B along row q gives

det A = (aq1 +uap1)cq1(A)+(aq2 +uap2)cq2(A)+ · · ·+(aqn +uapn)cqn(A)
= [aq1cq1(A)+aq2cq2(A)+ · · ·+aqncqn(A)]+u[ap1cq1(A)+ap2cq2(A)+ · · ·+apncqn(A)]
= det A+u det C

where C is the matrix obtained from A by replacing row q by row p (and both expansions are along
row q). Because rows p and q of C are equal, det C = 0 by property 4. Hence, det B = detA, as
required. As before, a similar proof holds for columns.

To illustrate Theorem 3.1.2, consider the following determinants.
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∣∣∣∣∣∣
3 −1 2
2 5 1
0 0 0

∣∣∣∣∣∣= 0 (because the last row consists of zeros)

∣∣∣∣∣∣
3 −1 5
2 8 7
1 2 −1

∣∣∣∣∣∣=−

∣∣∣∣∣∣
5 −1 3
7 8 2

−1 2 1

∣∣∣∣∣∣ (because two columns are interchanged)

∣∣∣∣∣∣
8 1 2
3 0 9
1 2 −1

∣∣∣∣∣∣= 3

∣∣∣∣∣∣
8 1 2
1 0 3
1 2 −1

∣∣∣∣∣∣ (because the second row of the matrix on the left is 3
times the second row of the matrix on the right)∣∣∣∣∣∣

2 1 2
4 0 4
1 3 1

∣∣∣∣∣∣= 0 (because two columns are identical)

∣∣∣∣∣∣
2 5 2

−1 2 9
3 1 1

∣∣∣∣∣∣=
∣∣∣∣∣∣

0 9 20
−1 2 9

3 1 1

∣∣∣∣∣∣ (because twice the second row of the matrix on the left
was added to the first row)

The following four examples illustrate how Theorem 3.1.2 is used to evaluate determinants.

Example 3.1.5

Evaluate det A when A =

 1 −1 3
1 0 −1
2 1 6

.

Solution. The matrix does have zero entries, so expansion along (say) the second row
would involve somewhat less work. However, a column operation can be used to get a zero
in position (2, 3)—namely, add column 1 to column 3. Because this does not change the
value of the determinant, we obtain

det A =

∣∣∣∣∣∣
1 −1 3
1 0 −1
2 1 6

∣∣∣∣∣∣=
∣∣∣∣∣∣

1 −1 4
1 0 0
2 1 8

∣∣∣∣∣∣=−
∣∣∣∣ −1 4

1 8

∣∣∣∣= 12

where we expanded the second 3×3 matrix along row 2.

Example 3.1.6

If det

 a b c
p q r
x y z

= 6, evaluate det A where A =

 a+ x b+ y c+ z
3x 3y 3z
−p −q −r

.
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Solution. First take common factors out of rows 2 and 3.

det A = 3(−1) det

 a+ x b+ y c+ z
x y z
p q r


Now subtract the second row from the first and interchange the last two rows.

det A =−3 det

 a b c
x y z
p q r

= 3 det

 a b c
p q r
x y z

= 3 ·6 = 18

The determinant of a matrix is a sum of products of its entries. In particular, if these entries
are polynomials in x, then the determinant itself is a polynomial in x. It is often of interest to
determine which values of x make the determinant zero, so it is very useful if the determinant is
given in factored form. Theorem 3.1.2 can help.

Example 3.1.7

Find the values of x for which det A = 0, where A =

 1 x x
x 1 x
x x 1

.

Solution. To evaluate det A, first subtract x times row 1 from rows 2 and 3.

det A =

∣∣∣∣∣∣
1 x x
x 1 x
x x 1

∣∣∣∣∣∣=
∣∣∣∣∣∣

1 x x
0 1− x2 x− x2

0 x− x2 1− x2

∣∣∣∣∣∣=
∣∣∣∣ 1− x2 x− x2

x− x2 1− x2

∣∣∣∣
At this stage we could simply evaluate the determinant (the result is 2x3 −3x2 +1). But
then we would have to factor this polynomial to find the values of x that make it zero.
However, this factorization can be obtained directly by first factoring each entry in the
determinant and taking a common factor of (1− x) from each row.

det A =

∣∣∣∣ (1− x)(1+ x) x(1− x)
x(1− x) (1− x)(1+ x)

∣∣∣∣= (1− x)2
∣∣∣∣ 1+ x x

x 1+ x

∣∣∣∣
= (1− x)2(2x+1)

Hence, det A = 0 means (1− x)2(2x+1) = 0, that is x = 1 or x =−1
2 .
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Example 3.1.8

If a1, a2, and a3 are given show that

det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

= (a3 −a1)(a3 −a2)(a2 −a1)

Solution. Begin by subtracting row 1 from rows 2 and 3, and then expand along column 1:

det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

= det

 1 a1 a2
1

0 a2 −a1 a2
2 −a2

1
0 a3 −a1 a2

3 −a2
1

=

[
a2 −a1 a2

2 −a2
1

a3 −a1 a2
3 −a2

1

]

Now (a2 −a1) and (a3 −a1) are common factors in rows 1 and 2, respectively, so

det

 1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

= (a2 −a1)(a3 −a1) det
[

1 a2 +a1
1 a3 +a1

]
= (a2 −a1)(a3 −a1)(a3 −a2)

The matrix in Example 3.1.8 is called a Vandermonde matrix, and the formula for its determinant
can be generalized to the n×n case (see Theorem 3.2.7).

If A is an n×n matrix, forming uA means multiplying every row of A by u. Applying property
3 of Theorem 3.1.2, we can take the common factor u out of each row and so obtain the following
useful result.

Theorem 3.1.3
If A is an n×n matrix, then det (uA) = un det A for any number u.

The next example displays a type of matrix whose determinant is easy to compute.

Example 3.1.9

Evaluate det A if A =


a 0 0 0
u b 0 0
v w c 0
x y z d

.

Solution. Expand along row 1 to get det A = a

∣∣∣∣∣∣
b 0 0
w c 0
y z d

∣∣∣∣∣∣. Now expand this along the top

row to get det A = ab
∣∣∣∣ c 0

z d

∣∣∣∣= abcd, the product of the main diagonal entries.
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A square matrix is called a lower triangular matrix if all entries above the main diagonal
are zero (as in Example 3.1.9). Similarly, an upper triangular matrix is one for which all entries
below the main diagonal are zero. A triangular matrix is one that is either upper or lower
triangular. Theorem 3.1.4 gives an easy rule for calculating the determinant of any triangular
matrix. The proof is like the solution to Example 3.1.9.

Theorem 3.1.4
If A is a square triangular matrix, then det A is the product of the entries on the main
diagonal.

Theorem 3.1.4 is useful in computer calculations because it is a routine matter to carry a matrix to
triangular form using row operations.

Block matrices such as those in the next theorem arise frequently in practice, and the theorem
gives an easy method for computing their determinants. This dovetails with Example 2.4.11.

Theorem 3.1.5

Consider matrices
[

A X
0 B

]
and

[
A 0
Y B

]
in block form, where A and B are square

matrices. Then

det
[

A X
0 B

]
= det A det B and det

[
A 0
Y B

]
= det A det B

Proof. Write T = det
[

A X
0 B

]
and proceed by induction on k where A is k × k. If k = 1, it is

the cofactor expansion along column 1. In general let Si(T ) denote the matrix obtained from T by
deleting row i and column 1. Then the cofactor expansion of det T along the first column is

det T = a11 det (S1(T ))−a21 det (S2(T ))+ · · ·±ak1 det (Sk(T )) (3.2)

where a11, a21, · · · , ak1 are the entries in the first column of A. But Si(T ) =
[

Si(A) Xi
0 B

]
for each

i = 1, 2, · · · , k, so det (Si(T )) = det (Si(A)) · det B by induction. Hence, Equation 3.2 becomes

det T = {a11 det (S1(T ))−a21 det (S2(T ))+ · · ·±ak1 det (Sk(T ))} det B
= {det A} det B

as required. The lower triangular case is similar.
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Example 3.1.10

det


2 3 1 3
1 −2 −1 1
0 1 0 1
0 4 0 1

=−

∣∣∣∣∣∣∣∣
2 1 3 3
1 −1 −2 1
0 0 1 1
0 0 4 1

∣∣∣∣∣∣∣∣=−
∣∣∣∣ 2 1

1 −1

∣∣∣∣ ∣∣∣∣ 1 1
4 1

∣∣∣∣=−(−3)(−3) =−9

The next result shows that det A is a linear transformation when regarded as a function of a
fixed column of A. The proof is Exercise 3.1.21.

Theorem 3.1.6
Given columns c1, · · · , c j−1, c j+1, · · · , cn in Rn, define T : Rn → R by

T (x) = det
[

c1 · · · c j−1 x c j+1 · · · cn
]

for all x in Rn

Then, for all x and y in Rn and all a in R,

T (x+y) = T (x)+T (y) and T (ax) = aT (x)

Exercises for 3.1

Exercise 3.1.1 Compute the determinants of the
following matrices.

[
2 −1
3 2

]
a)

[
6 9
8 12

]
b)

[
a2 ab
ab b2

]
c)

[
a+1 a

a a−1

]
d)

[
cosθ −sinθ

sinθ cosθ

]
e)

 2 0 −3
1 2 5
0 3 0

f)

 1 2 3
4 5 6
7 8 9

g)

 0 a 0
b c d
0 e 0

h)

 1 b c
b c 1
c 1 b

i)

 0 a b
a 0 c
b c 0

j)


0 1 −1 0
3 0 0 2
0 1 2 1
5 0 0 7

k)


1 0 3 1
2 2 6 0

−1 0 −3 1
4 1 12 0

l)


3 1 −5 2
1 3 0 1
1 0 5 2
1 1 2 −1

m)


4 −1 3 −1
3 1 0 2
0 1 2 2
1 2 −1 1

n)


1 −1 5 5
3 1 2 4

−1 −3 8 0
1 1 2 −1

o)


0 0 0 a
0 0 b p
0 c q k
d s t u

p)

b. 0

d. −1

f. −39
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h. 0

j. 2abc

l. 0

n. −56

p. abcd

Exercise 3.1.2 Show that det A = 0 if A has a row
or column consisting of zeros.

Exercise 3.1.3 Show that the sign of the position
in the last row and the last column of A is always
+1.

Exercise 3.1.4 Show that det I = 1 for any identity
matrix I.

Exercise 3.1.5 Evaluate the determinant of each
matrix by reducing it to upper triangular form. 1 −1 2

3 1 1
2 −1 3

a)

 −1 3 1
2 5 3
1 −2 1

b)


−1 −1 1 0

2 1 1 3
0 1 1 2
1 3 −1 2

c)


2 3 1 1
0 2 −1 3
0 5 1 1
1 1 2 5

d)

b. −17

d. 106

Exercise 3.1.6 Evaluate by cursory inspection:

a. det

 a b c
a+1 b+1 c+1
a−1 b−1 c−1



b. det

 a b c
a+b 2b c+b

2 2 2



b. 0

Exercise 3.1.7 If det

 a b c
p q r
x y z

=−1 compute:

a. det

 −x −y −z
3p+a 3q+b 3r+ c

2p 2q 2r



b. det

 −2a −2b −2c
2p+ x 2q+ y 2r+ z

3x 3y 3z



b. 12

Exercise 3.1.8 Show that:

a. det

 p+ x q+ y r+ z
a+ x b+ y c+ z
a+ p b+q c+ r

= 2 det

 a b c
p q r
x y z



b. det

 2a+ p 2b+q 2c+ r
2p+ x 2q+ y 2r+ z
2x+a 2y+b 2z+ c

= 9 det

 a b c
p q r
x y z



b. det

 2a+ p 2b+q 2c+ r
2p+ x 2q+ y 2r+ z
2x+a 2y+b 2z+ c


= 3 det

 a+ p+ x b+q+ y c+ r+ z
2p+ x 2q+ y 2r+ z
2x+a 2y+b 2z+ c


= 3 det

 a+ p+ x b+q+ y c+ r+ z
p−a q−b r− c
x− p y−q z− r


= 3 det

 3x 3y 3z
p−a q−b r− c
x− p y−q z− r

 · · ·

Exercise 3.1.9 In each case either prove the state-
ment or give an example showing that it is false:

a. det (A+B) = det A+ det B.

b. If det A = 0, then A has two equal rows.

c. If A is 2×2, then det (AT ) = det A.

d. If R is the reduced row-echelon form of A, then
det A = det R.

e. If A is 2×2, then det (7A) = 49 det A.



160 Determinants and Diagonalization

f. det (AT ) =− det A.

g. det (−A) =− det A.

h. If det A = det B where A and B are the same
size, then A = B.

b. False. A =

[
1 1
2 2

]

d. False. A =

[
2 0
0 1

]
→ R =

[
1 0
0 1

]

f. False. A =

[
1 1
0 1

]

h. False. A =

[
1 1
0 1

]
and B =

[
1 0
1 1

]

Exercise 3.1.10 Compute the determinant of each
matrix, using Theorem 3.1.5.

a.


1 −1 2 0 −2
0 1 0 4 1
1 1 5 0 0
0 0 0 3 −1
0 0 0 1 1



b.


1 2 0 3 0

−1 3 1 4 0
0 0 2 1 1
0 0 −1 0 2
0 0 3 0 1



b. 35

Exercise 3.1.11 If det A = 2, det B = −1, and
det C = 3, find:

det

 A X Y
0 B Z
0 0 C

a) det

 A 0 0
X B 0
Y Z C

b)

det

 A X Y
0 B 0
0 Z C

c) det

 A X 0
0 B 0
Y Z C

d)

b. −6

d. −6

Exercise 3.1.12 If A has three columns with only
the top two entries nonzero, show that det A = 0.

Exercise 3.1.13

a. Find det A if A is 3×3 and det (2A) = 6.

b. Under what conditions is det (−A) = det A?

Exercise 3.1.14 Evaluate by first adding all other
rows to the first row.

a. det

 x−1 2 3
2 −3 x−2
−2 x −2



b. det

 x−1 −3 1
2 −1 x−1
−3 x+2 −2



b. −(x−2)(x2 +2x−12)

Exercise 3.1.15

a. Find b if det

 5 −1 x
2 6 y

−5 4 z

= ax+by+ cz.

b. Find c if det

 2 x −1
1 y 3

−3 z 4

= ax+by+ cz.

b. −7

Exercise 3.1.16 Find the real numbers x and y
such that det A = 0 if:

A =

 0 x y
y 0 x
x y 0

a) A=

 1 x x
−x −2 x
−x −x −3

b)
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A =


1 x x2 x3

x x2 x3 1
x2 x3 1 x
x3 1 x x2

c)

A =


x y 0 0
0 x y 0
0 0 x y
y 0 0 x

d)

b. ±
√

6
2

d. x =±y

Exercise 3.1.17 Show that

det


0 1 1 1
1 0 x x
1 x 0 x
1 x x 0

=−3x2

Exercise 3.1.18 Show that

det


1 x x2 x3

a 1 x x2

p b 1 x
q r c 1

= (1−ax)(1−bx)(1− cx).

Exercise 3.1.19
Given the polynomial p(x) = a+ bx+ cx2 + dx3 + x4,

the matrix C =


0 1 0 0
0 0 1 0
0 0 0 1

−a −b −c −d

 is called the

companion matrix of p(x). Show that det (xI −
C) = p(x).

Exercise 3.1.20 Show that

det

 a+ x b+ x c+ x
b+ x c+ x a+ x
c+ x a+ x b+ x


= (a+b+ c+3x)[(ab+ac+bc)− (a2 +b2 + c2)]

Exercise 3.1.21 . Prove Theorem 3.1.6.
[Hint: Expand the determinant along column j.]

Let x =


x1
x2
...

xn

, y =


y1
y2
...

yn

 and A =

[
c1 · · · x+y · · · cn

]
where x + y is in col-

umn j. Expanding det A along column j (the one

containing x+y):

T (x+y) = det A =
n

∑
i=1

(xi + yi)ci j(A)

=
n

∑
i=1

xici j(A)+
n

∑
i=1

yici j(A)

= T (x)+T (y)

Similarly for T (ax) = aT (x).

Exercise 3.1.22 Show that

det


0 0 · · · 0 a1
0 0 · · · a2 ∗
...

...
...

...
0 an−1 · · · ∗ ∗
an ∗ · · · ∗ ∗

= (−1)ka1a2 · · ·an

where either n = 2k or n = 2k+ 1, and ∗-entries are
arbitrary.

Exercise 3.1.23 By expanding along the first col-
umn, show that:

det



1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 1
1 0 0 0 · · · 0 1


= 1+(−1)n+1

if the matrix is n×n, n ≥ 2.

Exercise 3.1.24 Form matrix B from a matrix A
by writing the columns of A in reverse order. Express
det B in terms of det A.
If A is n× n, then det B = (−1)k det A where n = 2k
or n = 2k+1.

Exercise 3.1.25 Prove property 3 of Theo-
rem 3.1.2 by expanding along the row (or column)
in question.

Exercise 3.1.26 Show that the line through two
distinct points (x1, y1) and (x2, y2) in the plane has
equation

det

 x y 1
x1 y1 1
x2 y2 1

= 0

Exercise 3.1.27 Let A be an n×n matrix. Given
a polynomial p(x) = a0 +a1x+ · · ·+amxm, we write
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p(A) = a0I+a1A+ · · ·+amAm. For example, if p(x) =
2−3x+5x2, then
p(A) = 2I −3A+5A2. The characteristic polynomial
of A is defined to be cA(x) = det [xI − A], and the
Cayley-Hamilton theorem asserts that cA(A) = 0 for
any matrix A.

a. Verify the theorem for

i. A =

[
3 2
1 −1

]
ii. A=

 1 −1 1
0 1 0
8 2 2


b. Prove the theorem for A =

[
a b
c d

]
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3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived. One consequence of these theorems
is that a square matrix A is invertible if and only if det A 6= 0. Moreover, determinants are used to
give a formula for A−1 which, in turn, yields a formula (called Cramer’s rule) for the solution of any
system of linear equations with an invertible coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812) about the determinant of a
product of matrices. The proof is given at the end of this section.

Theorem 3.2.1: Product Theorem
If A and B are n×n matrices, then det (AB) = det A det B.

The complexity of matrix multiplication makes the product theorem quite unexpected. Here is
an example where it reveals an important numerical identity.

Example 3.2.1

If A =

[
a b

−b a

]
and B =

[
c d

−d c

]
then AB =

[
ac−bd ad +bc

−(ad +bc) ac−bd

]
.

Hence det A det B = det (AB) gives the identity

(a2 +b2)(c2 +d2) = (ac−bd)2 +(ad +bc)2

Theorem 3.2.1 extends easily to det (ABC) = det A det B det C. In fact, induction gives

det (A1A2 · · ·Ak−1Ak) = det A1 det A2 · · · det Ak−1 det Ak

for any square matrices A1, . . . , Ak of the same size. In particular, if each Ai = A, we obtain

det (Ak) = (detA)k, for any k ≥ 1

We can now give the invertibility condition.

Theorem 3.2.2
An n×n matrix A is invertible if and only if det A 6= 0. When this is the case,
det (A−1) = 1

det A

Proof. If A is invertible, then AA−1 = I; so the product theorem gives

1 = det I = det (AA−1) = det A det A−1

Hence, det A 6= 0 and also det A−1 = 1
det A .
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Conversely, if det A 6= 0, we show that A can be carried to I by elementary row operations
(and invoke Theorem 2.4.5). Certainly, A can be carried to its reduced row-echelon form R, so
R = Ek · · ·E2E1A where the Ei are elementary matrices (Theorem 2.5.1). Hence the product theorem
gives

det R = det Ek · · · det E2 det E1 det A

Since det E 6= 0 for all elementary matrices E, this shows det R 6= 0. In particular, R has no row of
zeros, so R = I because R is square and reduced row-echelon. This is what we wanted.

Example 3.2.2

For which values of c does A =

 1 0 −c
−1 3 1

0 2c −4

 have an inverse?

Solution. Compute det A by first adding c times column 1 to column 3 and then expanding
along row 1.

det A = det

 1 0 −c
−1 3 1

0 2c −4

= det

 1 0 0
−1 3 1− c

0 2c −4

= 2(c+2)(c−3)

Hence, det A = 0 if c =−2 or c = 3, and A has an inverse if c 6=−2 and c 6= 3.

Example 3.2.3

If a product A1A2 · · ·Ak of square matrices is invertible, show that each Ai is invertible.

Solution. We have det A1 det A2 · · · det Ak = det (A1A2 · · ·Ak) by the product theorem, and
det (A1A2 · · ·Ak) 6= 0 by Theorem 3.2.2 because A1A2 · · ·Ak is invertible. Hence

det A1 det A2 · · · det Ak 6= 0

so det Ai 6= 0 for each i. This shows that each Ai is invertible, again by Theorem 3.2.2.

Theorem 3.2.3
If A is any square matrix, det AT = det A.

Proof. Consider first the case of an elementary matrix E. If E is of type I or II, then ET = E; so
certainly det ET = det E. If E is of type III, then ET is also of type III; so det ET = 1 = det E by
Theorem 3.1.2. Hence, det ET = det E for every elementary matrix E.

Now let A be any square matrix. If A is not invertible, then neither is AT ; so det AT = 0 = det A
by Theorem 3.2.2. On the other hand, if A is invertible, then A = Ek · · ·E2E1, where the Ei are
elementary matrices (Theorem 2.5.2). Hence, AT = ET

1 ET
2 · · ·ET

k so the product theorem gives
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det AT = det ET
1 det ET

2 · · · det ET
k = det E1 det E2 · · · det Ek

= det Ek · · · det E2 det E1

= det A

This completes the proof.

Example 3.2.4

If det A = 2 and det B = 5, calculate det (A3B−1AT B2).

Solution. We use several of the facts just derived.

det (A3B−1AT B2) = det (A3) det (B−1) det (AT ) det (B2)

= (det A)3 1
det B det A(det B)2

= 23 · 1
5 ·2 ·5

2

= 80

Example 3.2.5

A square matrix is called orthogonal if A−1 = AT . What are the possible values of det A if
A is orthogonal?

Solution. If A is orthogonal, we have I = AAT . Take determinants to obtain

1 = det I = det (AAT ) = det A det AT = (det A)2

Since det A is a number, this means det A =±1.

Hence Theorems 2.6.4 and 2.6.5 imply that rotation about the origin and reflection about a line
through the origin in R2 have orthogonal matrices with determinants 1 and −1 respectively. In fact
they are the only such transformations of R2. We have more to say about this in Section 8.2.

Adjugates

In Section 2.4 we defined the adjugate of a 2 × 2 matrix A =

[
a b
c d

]
to be adj (A) =

[
d −b

−c a

]
.

Then we verified that A(adj A) = (det A)I = (adj A)A and hence that, if det A 6= 0, A−1 = 1
det A adj A.

We are now able to define the adjugate of an arbitrary square matrix and to show that this formula
for the inverse remains valid (when the inverse exists).

Recall that the (i, j)-cofactor ci j(A) of a square matrix A is a number defined for each position
(i, j) in the matrix. If A is a square matrix, the cofactor matrix of A is defined to be the matrix[
ci j(A)

]
whose (i, j)-entry is the (i, j)-cofactor of A.
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Definition 3.3 Adjugate of a Matrix

The adjugate4of A, denoted adj (A), is the transpose of this cofactor matrix; in symbols,

adj (A) =
[
ci j(A)

]T

This agrees with the earlier definition for a 2×2 matrix A as the reader can verify.

Example 3.2.6

Compute the adjugate of A =

 1 3 −2
0 1 5

−2 −6 7

 and calculate A(adj A) and (adj A)A.

Solution. We first find the cofactor matrix.

 c11(A) c12(A) c13(A)
c21(A) c22(A) c23(A)
c31(A) c32(A) c33(A)

=



∣∣∣∣ 1 5
−6 7

∣∣∣∣ −
∣∣∣∣ 0 5
−2 7

∣∣∣∣ ∣∣∣∣ 0 1
−2 −6

∣∣∣∣
−
∣∣∣∣ 3 −2
−6 7

∣∣∣∣ ∣∣∣∣ 1 −2
−2 7

∣∣∣∣ −
∣∣∣∣ 1 3
−2 −6

∣∣∣∣∣∣∣∣ 3 −2
1 5

∣∣∣∣ −
∣∣∣∣ 1 −2

0 5

∣∣∣∣ ∣∣∣∣ 1 3
0 1

∣∣∣∣


=

 37 −10 2
−9 3 0
17 −5 1


Then the adjugate of A is the transpose of this cofactor matrix.

adj A =

 37 −10 2
−9 3 0
17 −5 1

T

=

 37 −9 17
−10 3 −5

2 0 1


The computation of A(adj A) gives

A(adj A) =

 1 3 −2
0 1 5

−2 −6 7

 37 −9 17
−10 3 −5

2 0 1

=

 3 0 0
0 3 0
0 0 3

= 3I

and the reader can verify that also (adj A)A = 3I. Hence, analogy with the 2×2 case would
indicate that det A = 3; this is, in fact, the case.

The relationship A(adj A) = (det A)I holds for any square matrix A. To see why this is so,

4This is also called the classical adjoint of A, but the term “adjoint” has another meaning.
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consider the general 3×3 case. Writing ci j(A) = ci j for short, we have

adj A =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

T

=

 c11 c21 c31
c12 c22 c32
c13 c23 c33


If A =

[
ai j

]
in the usual notation, we are to verify that A(adj A) = (det A)I. That is,

A(adj A) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 c11 c21 c31
c12 c22 c32
c13 c23 c33

=

 det A 0 0
0 det A 0
0 0 det A


Consider the (1, 1)-entry in the product. It is given by a11c11 +a12c12 +a13c13, and this is just the
cofactor expansion of det A along the first row of A. Similarly, the (2, 2)-entry and the (3, 3)-entry
are the cofactor expansions of det A along rows 2 and 3, respectively.

So it remains to be seen why the off-diagonal elements in the matrix product A(adj A) are all
zero. Consider the (1, 2)-entry of the product. It is given by a11c21 + a12c22 + a13c23. This looks
like the cofactor expansion of the determinant of some matrix. To see which, observe that c21, c22,
and c23 are all computed by deleting row 2 of A (and one of the columns), so they remain the same
if row 2 of A is changed. In particular, if row 2 of A is replaced by row 1, we obtain

a11c21 +a12c22 +a13c23 = det

 a11 a12 a13
a11 a12 a13
a31 a32 a33

= 0

where the expansion is along row 2 and where the determinant is zero because two rows are identical.
A similar argument shows that the other off-diagonal entries are zero.

This argument works in general and yields the first part of Theorem 3.2.4. The second assertion
follows from the first by multiplying through by the scalar 1

det A .

Theorem 3.2.4: Adjugate Formula

If A is any square matrix, then

A(adj A) = (det A)I = (adj A)A

In particular, if det A 6= 0, the inverse of A is given by

A−1 = 1
det A adj A

It is important to note that this theorem is not an efficient way to find the inverse of the matrix
A. For example, if A were 10× 10, the calculation of adj A would require computing 102 = 100
determinants of 9×9 matrices! On the other hand, the matrix inversion algorithm would find A−1

with about the same effort as finding det A. Clearly, Theorem 3.2.4 is not a practical result: its
virtue is that it gives a formula for A−1 that is useful for theoretical purposes.
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Example 3.2.7

Find the (2, 3)-entry of A−1 if A =

 2 1 3
5 −7 1
3 0 −6

.

Solution. First compute

det A =

∣∣∣∣∣∣
2 1 3
5 −7 1
3 0 −6

∣∣∣∣∣∣=
∣∣∣∣∣∣

2 1 7
5 −7 11
3 0 0

∣∣∣∣∣∣= 3
∣∣∣∣ 1 7
−7 11

∣∣∣∣= 180

Since A−1 = 1
det A adj A = 1

180

[
ci j(A)

]T , the (2, 3)-entry of A−1 is the (3, 2)-entry of the

matrix 1
180

[
ci j(A)

]
; that is, it equals 1

180c32(A) = 1
180

(
−
∣∣∣∣ 2 3

5 1

∣∣∣∣)= 13
180 .

Example 3.2.8

If A is n×n, n ≥ 2, show that det (adj A) = (det A)n−1.

Solution. Write d = det A; we must show that det (adj A) = dn−1. We have A(adj A) = dI by
Theorem 3.2.4, so taking determinants gives d det (adj A) = dn. Hence we are done if d 6= 0.
Assume d = 0; we must show that det (adj A) = 0, that is, adj A is not invertible. If A 6= 0,
this follows from A(adj A) = dI = 0; if A = 0, it follows because then adj A = 0.

Cramer’s Rule

Theorem 3.2.4 has a nice application to linear equations. Suppose

Ax = b

is a system of n equations in n variables x1, x2, . . . , xn. Here A is the n×n coefficient matrix, and
x and b are the columns

x =


x1
x2
...

xn

 and b =


b1
b2
...

bn
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of variables and constants, respectively. If det A 6= 0, we left multiply by A−1 to obtain the solution
x = A−1b. When we use the adjugate formula, this becomes

x1
x2
...

xn

= 1
det A(adj A)b

= 1
det A


c11(A) c21(A) · · · cn1(A)
c12(A) c22(A) · · · cn2(A)

... ... ...
c1n(A) c2n(A) · · · cnn(A)




b1
b2
...

bn


Hence, the variables x1, x2, . . . , xn are given by

x1 =
1

det A [b1c11(A)+b2c21(A)+ · · ·+bncn1(A)]

x2 =
1

det A [b1c12(A)+b2c22(A)+ · · ·+bncn2(A)]
... ...

xn =
1

det A [b1c1n(A)+b2c2n(A)+ · · ·+bncnn(A)]

Now the quantity b1c11(A)+b2c21(A)+ · · ·+bncn1(A) occurring in the formula for x1 looks like the
cofactor expansion of the determinant of a matrix. The cofactors involved are c11(A), c21(A), . . . , cn1(A),
corresponding to the first column of A. If A1 is obtained from A by replacing the first column of A
by b, then ci1(A1) = ci1(A) for each i because column 1 is deleted when computing them. Hence,
expanding det (A1) by the first column gives

det A1 = b1c11(A1)+b2c21(A1)+ · · ·+bncn1(A1)

= b1c11(A)+b2c21(A)+ · · ·+bncn1(A)
= (det A)x1

Hence, x1 =
det A1
det A and similar results hold for the other variables.

Theorem 3.2.5: Cramer’s Rule5

If A is an invertible n×n matrix, the solution to the system

Ax = b

of n equations in the variables x1, x2, . . . , xn is given by

x1 =
det A1
det A , x2 =

det A2
det A , · · · , xn =

det An
det A

where, for each k, Ak is the matrix obtained from A by replacing column k by b.

5Gabriel Cramer (1704–1752) was a Swiss mathematician who wrote an introductory work on algebraic curves.
He popularized the rule that bears his name, but the idea was known earlier.
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Example 3.2.9

Find x1, given the following system of equations.

5x1 + x2 − x3 = 4
9x1 + x2 − x3 = 1
x1 − x2 + 5x3 = 2

Solution. Compute the determinants of the coefficient matrix A and the matrix A1
obtained from it by replacing the first column by the column of constants.

det A = det

 5 1 −1
9 1 −1
1 −1 5

=−16

det A1 = det

 4 1 −1
1 1 −1
2 −1 5

= 12

Hence, x1 =
det A1
det A =−3

4 by Cramer’s rule.

Cramer’s rule is not an efficient way to solve linear systems or invert matrices. True, it enabled
us to calculate x1 here without computing x2 or x3. Although this might seem an advantage, the
truth of the matter is that, for large systems of equations, the number of computations needed to
find all the variables by the gaussian algorithm is comparable to the number required to find one of
the determinants involved in Cramer’s rule. Furthermore, the algorithm works when the matrix of
the system is not invertible and even when the coefficient matrix is not square. Like the adjugate
formula, then, Cramer’s rule is not a practical numerical technique; its virtue is theoretical.

Polynomial Interpolation

Example 3.2.10

0 5 10 12 15

2

4

6

(5, 3)

(10, 5)
(15, 6)

Diameter

Age

A forester
wants to estimate the age (in years) of a tree by measuring the
diameter of the trunk (in cm). She obtains the following data:

Tree 1 Tree 2 Tree 3
Trunk Diameter 5 10 15
Age 3 5 6

Estimate the age of a tree with a trunk diameter of 12 cm.

Solution.
The forester decides to “fit” a quadratic polynomial

p(x) = r0 + r1x+ r2x2
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to the data, that is choose the coefficients r0, r1, and r2 so that p(5) = 3, p(10) = 5, and
p(15) = 6, and then use p(12) as the estimate. These conditions give three linear equations:

r0 + 5r1 + 25r2 = 3
r0 + 10r1 + 100r2 = 5
r0 + 15r1 + 225r2 = 6

The (unique) solution is r0 = 0, r1 =
7

10 , and r2 =− 1
50 , so

p(x) = 7
10x− 1

50x2 = 1
50x(35− x)

Hence the estimate is p(12) = 5.52.

As in Example 3.2.10, it often happens that two variables x and y are related but the actual
functional form y= f (x) of the relationship is unknown. Suppose that for certain values x1, x2, . . . , xn
of x the corresponding values y1, y2, . . . , yn are known (say from experimental measurements). One
way to estimate the value of y corresponding to some other value a of x is to find a polynomial6

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

that “fits” the data, that is p(xi) = yi holds for each i = 1, 2, . . . , n. Then the estimate for y is p(a).
As we will see, such a polynomial always exists if the xi are distinct.

The conditions that p(xi) = yi are

r0 + r1x1 + r2x2
1 + · · ·+ rn−1xn−1

1 = y1

r0 + r1x2 + r2x2
2 + · · ·+ rn−1xn−1

2 = y2
... ... ... ... ...

r0 + r1xn + r2x2
n + · · ·+ rn−1xn−1

n = yn

In matrix form, this is 
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2... ... ... ...
1 xn x2

n · · · xn−1
n




r0
r1
...

rn−1

=


y1
y2
...

yn

 (3.3)

It can be shown (see Theorem 3.2.7) that the determinant of the coefficient matrix equals the
product of all terms (xi − x j) with i > j and so is nonzero (because the xi are distinct). Hence the
equations have a unique solution r0, r1, . . . , rn−1. This proves

6A polynomial is an expression of the form a0 + a1x+ a2x2 + · · ·+ anxn where the ai are numbers and x is a
variable. If an 6= 0, the integer n is called the degree of the polynomial, and an is called the leading coefficient. See
Appendix ??.
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Theorem 3.2.6
Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and assume that the xi are distinct.
Then there exists a unique polynomial

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

such that p(xi) = yi for each i = 1, 2, . . . , n.

The polynomial in Theorem 3.2.6 is called the interpolating polynomial for the data.
We conclude by evaluating the determinant of the coefficient matrix in Equation 3.3. If a1, a2, . . . , an

are numbers, the determinant

det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2
1 a3 a2

3 · · · an−1
3... ... ... ...

1 an a2
n · · · an−1

n


is called a Vandermonde determinant.7 There is a simple formula for this determinant. If n = 2,
it equals (a2 −a1); if n = 3, it is (a3 −a2)(a3 −a1)(a2 −a1) by Example 3.1.8. The general result is
the product

∏
1≤ j<i≤n

(ai −a j)

of all factors (ai −a j) where 1 ≤ j < i ≤ n. For example, if n = 4, it is

(a4 −a3)(a4 −a2)(a4 −a1)(a3 −a2)(a3 −a1)(a2 −a1)

Theorem 3.2.7
Let a1, a2, . . . , an be numbers where n ≥ 2. Then the corresponding Vandermonde
determinant is given by

det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2
1 a3 a2

3 · · · an−1
3... ... ... ...

1 an a2
n · · · an−1

n

= ∏
1≤ j<i≤n

(ai −a j)

Proof. We may assume that the ai are distinct; otherwise both sides are zero. We proceed by
induction on n ≥ 2; we have it for n = 2, 3. So assume it holds for n−1. The trick is to replace an

7Alexandre Théophile Vandermonde (1735–1796) was a French mathematician who made contributions to the
theory of equations.
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by a variable x, and consider the determinant

p(x) = det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2... ... ... ...
1 an−1 a2

n−1 · · · an−1
n−1

1 x x2 · · · xn−1


Then p(x) is a polynomial of degree at most n− 1 (expand along the last row), and p(ai) = 0 for
each i = 1, 2, . . . , n− 1 because in each case there are two identical rows in the determinant. In
particular, p(a1) = 0, so we have p(x) = (x− a1)p1(x) by the factor theorem (see Appendix ??).
Since a2 6= a1, we obtain p1(a2) = 0, and so p1(x) = (x−a2)p2(x). Thus p(x) = (x−a1)(x−a2)p2(x).
As the ai are distinct, this process continues to obtain

p(x) = (x−a1)(x−a2) · · ·(x−an−1)d (3.4)

where d is the coefficient of xn−1 in p(x). By the cofactor expansion of p(x) along the last row we
get

d = (−1)n+n det


1 a1 a2

1 · · · an−2
1

1 a2 a2
2 · · · an−2

2... ... ... ...
1 an−1 a2

n−1 · · · an−2
n−1


Because (−1)n+n = 1 the induction hypothesis shows that d is the product of all factors (ai − a j)
where 1 ≤ j < i ≤ n−1. The result now follows from Equation 3.4 by substituting an for x in p(x).

Proof of Theorem 3.2.1. If A and B are n×n matrices we must show that

det (AB) = det A det B (3.5)

Recall that if E is an elementary matrix obtained by doing one row operation to In, then doing that
operation to a matrix C (Lemma 2.5.1) results in EC. By looking at the three types of elementary
matrices separately, Theorem 3.1.2 shows that

det (EC) = det E det C for any matrix C (3.6)

Thus if E1, E2, . . . , Ek are all elementary matrices, it follows by induction that

det (Ek · · ·E2E1C) = det Ek · · · det E2 det E1 det C for any matrix C (3.7)

Lemma. If A has no inverse, then det A = 0.
Proof. Let A → R where R is reduced row-echelon, say En · · ·E2E1A = R. Then R has a row of

zeros by Part (4) of Theorem 2.4.5, and hence det R = 0. But then Equation 3.7 gives det A = 0
because det E 6= 0 for any elementary matrix E. This proves the Lemma.

Now we can prove Equation 3.5 by considering two cases.
Case 1. A has no inverse. Then AB also has no inverse (otherwise A[B(AB)−1] = I) so A is invertible
by Corollary 2.4.2 to Theorem 2.4.5. Hence the above Lemma (twice) gives

det (AB) = 0 = 0 det B = det A det B
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proving Equation 3.5 in this case.
Case 2. A has an inverse. Then A is a product of elementary matrices by Theorem 2.5.2, say
A = E1E2 · · ·Ek. Then Equation 3.7 with C = I gives

det A = det (E1E2 · · ·Ek) = det E1 det E2 · · · det Ek

But then Equation 3.7 with C = B gives

det (AB) = det [(E1E2 · · ·Ek)B] = det E1 det E2 · · · det Ek det B = det A det B

and Equation 3.5 holds in this case too.

Exercises for 3.2

Exercise 3.2.1 Find the adjugate of each of the
following matrices. 5 1 3

−1 2 3
1 4 8

a)

 1 −1 2
3 1 0
0 −1 1

b)

 1 0 −1
−1 1 0

0 −1 1

c) 1
3

 −1 2 2
2 −1 2
2 2 −1

d)

b.

 1 −1 −2
−3 1 6
−3 1 4



d. 1
3

 −1 2 2
2 −1 2
2 2 −1

= A

Exercise 3.2.2 Use determinants to find which
real values of c make each of the following matrices
invertible. 1 0 3

3 −4 c
2 5 8

a)

 0 c −c
−1 2 1

c −c c

b)

 c 1 0
0 2 c

−1 c 5

c)

 4 c 3
c 2 c
5 c 4

d)

 1 2 −1
0 −1 c
2 c 1

e)

 1 c −1
c 1 1
0 1 c

f)

b. c 6= 0

d. any c

f. c 6=−1

Exercise 3.2.3 Let A, B, and C denote n×n ma-
trices and assume that det A = −1, det B = 2, and
det C = 3. Evaluate:

det (A3BCT B−1)a) det (B2C−1AB−1CT )b)

b. −2

Exercise 3.2.4 Let A and B be invertible n× n
matrices. Evaluate:

det (B−1AB)a) det (A−1B−1AB)b)

b. 1
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Exercise 3.2.5 If A is 3× 3 and det (2A−1) = −4
and det (A3(B−1)T ) =−4, find det A and det B.

Exercise 3.2.6 Let A =

 a b c
p q r
u v w

 and assume

that det A = 3. Compute:

a. det (2B−1) where B =

 4u 2a −p
4v 2b −q
4w 2c −r



b. det (2C−1) where C =

 2p −a+u 3u
2q −b+ v 3v
2r −c+w 3w



b. 4
9

Exercise 3.2.7 If det
[

a b
c d

]
=−2 calculate:

a. det

 2 −2 0
c+1 −1 2a
d −2 2 2b



b. det

 2b 0 4d
1 2 −2

a+1 2 2(c−1)


c. det (3A−1) where A =

[
3c a+ c
3d b+d

]

b. 16

Exercise 3.2.8 Solve each of the following by
Cramer’s rule:

2x+ y= 1
3x+ 7y=−2

a) 3x+ 4y= 9
2x− y=−1

b)

5x+ y− z=−7
2x− y− 2z= 6
3x + 2z=−7

c)
4x− y+ 3z= 1
6x+ 2y− z= 0
3x+ 3y+ 2z=−1

d)

b. 1
11

[
5

21

]

d. 1
79

 12
−37
−2


Exercise 3.2.9 Use Theorem 3.2.4 to find the
(2, 3)-entry of A−1 if:

A =

 3 2 1
1 1 2

−1 2 1

a) A =

 1 2 −1
3 1 1
0 4 7

b)

b. 4
51

Exercise 3.2.10 Explain what can be said about
det A if:

A2 = Aa) A2 = Ib)
A3 = Ac) PA = P and P is in-

vertible
d)

A2 = uA and A is n×
n

e) A = −AT and A is
n×n

f)

A2 + I = 0 and A is
n×n

g)

b. det A = 1, −1

d. det A = 1

f. det A = 0 if n is odd; nothing can be said if n
is even

Exercise 3.2.11 Let A be n×n. Show that uA =
(uI)A, and use this with Theorem 3.2.1 to deduce the
result in Theorem 3.1.3: det (uA) = un det A.

Exercise 3.2.12 If A and B are n× n matrices, if
AB = −BA, and if n is odd, show that either A or B
has no inverse.

Exercise 3.2.13 Show that det AB = det BA holds
for any two n×n matrices A and B.

Exercise 3.2.14 If Ak = 0 for some k ≥ 1, show
that A is not invertible.

Exercise 3.2.15 If A−1 = AT , describe the cofactor
matrix of A in terms of A.
dA where d = det A
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Exercise 3.2.16 Show that no 3×3 matrix A ex-
ists such that A2 + I = 0. Find a 2×2 matrix A with
this property.

Exercise 3.2.17 Show that det (A+BT )= det (AT +
B) for any n×n matrices A and B.

Exercise 3.2.18 Let A and B be invertible n×n ma-
trices. Show that det A = det B if and only if A =UB
where U is a matrix with det U = 1.

Exercise 3.2.19 For each of the matrices in Exer-
cise 2, find the inverse for those values of c for which
it exists.

b. 1
c

 1 0 1
0 c 1

−1 c 1

 , c 6= 0

d. 1
2

 8− c2 −c c2 −6
c 1 −c

c2 −10 c 8− c2



f. 1
c3+1

 1− c c2 +1 −c−1
c2 −c c+1
−c 1 c2 −1

 , c 6=−1

Exercise 3.2.20 In each case either prove the
statement or give an example showing that it is false:

a. If adj A exists, then A is invertible.

b. If A is invertible and adj A = A−1, then det A =
1.

c. det (AB) = det (BT A).

d. If det A 6= 0 and AB = AC, then B =C.

e. If AT =−A, then det A =−1.

f. If adj A = 0, then A = 0.

g. If A is invertible, then adj A is invertible.

h. If A has a row of zeros, so also does adj A.

i. det (AT A)> 0 for all square matrices A.

j. det (I +A) = 1+ det A.

k. If AB is invertible, then A and B are invertible.

l. If det A = 1, then adj A = A.

m. If A is invertible and det A = d, then adj A =
dA−1.

b. T. det AB = det A det B = det B det A = det BA.

d. T. det A 6= 0 means A−1 exists, so AB = AC im-
plies that B =C.

f. F. If A =

 1 1 1
1 1 1
1 1 1

 then adj A = 0.

h. F. If A =

[
1 1
0 0

]
then adj A =

[
0 −1
0 1

]

j. F. If A =

[
−1 1

1 −1

]
then det (I + A) = −1

but 1+ det A = 1.

l. F. If A =

[
1 1
0 1

]
then det A = 1 but adj A =[

1 −1
0 1

]
6= A

Exercise 3.2.21 If A is 2×2 and det A = 0, show
that one column of A is a scalar multiple of the
other. [Hint: Definition 2.5 and Part (2) of The-
orem 2.4.5.]

Exercise 3.2.22 Find a polynomial p(x) of degree
2 such that:

a. p(0) = 2, p(1) = 3, p(3) = 8

b. p(0) = 5, p(1) = 3, p(2) = 5

b. 5−4x+2x2.

Exercise 3.2.23 Find a polynomial p(x) of degree
3 such that:

a. p(0) = p(1) = 1, p(−1) = 4, p(2) =−5

b. p(0) = p(1) = 1, p(−1) = 2, p(−2) =−3

b. 1− 5
3 x+ 1

2 x2 + 7
6 x3
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Exercise 3.2.24 Given the following data pairs,
find the interpolating polynomial of degree 3 and es-
timate the value of y corresponding to x = 1.5.

a. (0, 1), (1, 2), (2, 5), (3, 10)

b. (0, 1), (1, 1.49), (2, −0.42), (3, −11.33)

c. (0, 2), (1, 2.03), (2, −0.40), (−1, 0.89)

b. 1−0.51x+2.1x2 −1.1x3;1.25, so y = 1.25

Exercise 3.2.25 If A =

 1 a b
−a 1 c
−b −c 1

 show that

det A = 1+a2 +b2 +c2. Hence, find A−1 for any a, b,
and c.

Exercise 3.2.26

a. Show that A =

 a p q
0 b r
0 0 c

 has an inverse if

and only if abc 6= 0, and find A−1 in that case.

b. Show that if an upper triangular matrix is in-
vertible, the inverse is also upper triangular.

b. Use induction on n where A is n × n. It is
clear if n = 1. If n > 1, write A =

[
a X
0 B

]
in

block form where B is (n−1)× (n−1). Then

A−1 =

[
a−1 −a−1XB−1

0 B−1

]
, and this is upper

triangular because B is upper triangular by in-
duction.

Exercise 3.2.27 Let A be a matrix each of whose
entries are integers. Show that each of the following
conditions implies the other.

1. A is invertible and A−1 has integer entries.

2. det A = 1 or −1.

Exercise 3.2.28 If A−1 =

 3 0 1
0 2 3
3 1 −1

 find adj A.

− 1
21

 3 0 1
0 2 3
3 1 −1


Exercise 3.2.29 If A is 3× 3 and det A = 2, find
det (A−1 +4 adj A).

Exercise 3.2.30 Show that det
[

0 A
B X

]
=

det A det B when A and B are 2×2. What if A and B

are 3×3? [Hint: Block multiply by
[

0 I
I 0

]
.]

Exercise 3.2.31 Let A be n×n, n ≥ 2, and assume
one column of A consists of zeros. Find the possible
values of rank (adj A).

Exercise 3.2.32 If A is 3×3 and invertible, com-
pute det (−A2(adj A)−1).

Exercise 3.2.33 Show that adj (uA) = un−1 adj A
for all n×n matrices A.

Exercise 3.2.34 Let A and B denote invertible
n×n matrices. Show that:

a. adj (adj A) = (det A)n−2A (here n ≥ 2) [Hint:
See Example 3.2.8.]

b. adj (A−1) = (adj A)−1

c. adj (AT ) = (adj A)T

d. adj (AB) = (adj B)(adj A) [Hint: Show that
AB adj (AB) = AB adj B adj A.]

b. Have (adj A)A = (det A)I; so taking inverses,
A−1 · (adj A)−1 = 1

det A I. On the other hand,
A−1 adj (A−1) = det (A−1)I = 1

det A I. Compar-
ison yields A−1(adj A)−1 = A−1 adj (A−1), and
part (b) follows.

d. Write det A = d, det B = e. By the
adjugate formula AB adj (AB) = deI, and
AB adj B adj A = A[eI] adj A = (eI)(dI) = deI.
Done as AB is invertible.
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3.3 Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the weather in a region, the
economy of a nation, the diversity of an ecosystem, etc. Describing such systems is difficult in
general and various methods have been developed in special cases. In this section we describe one
such method, called diagonalization, which is one of the most important techniques in linear algebra.
A very fertile example of this procedure is in modelling the growth of the population of an animal
species. This has attracted more attention in recent years with the ever increasing awareness that
many species are endangered. To motivate the technique, we begin by setting up a simple model
of a bird population in which we make assumptions about survival and reproduction rates.

Example 3.3.1

Consider the evolution of the population of a species of birds. Because the number of males
and females are nearly equal, we count only females. We assume that each female remains a
juvenile for one year and then becomes an adult, and that only adults have offspring. We
make three assumptions about reproduction and survival rates:

1. The number of juvenile females hatched in any year is twice the number of adult
females alive the year before (we say the reproduction rate is 2).

2. Half of the adult females in any year survive to the next year (the adult survival
rate is 1

2).

3. One quarter of the juvenile females in any year survive into adulthood (the juvenile
survival rate is 1

4).

If there were 100 adult females and 40 juvenile females alive initially, compute the
population of females k years later.

Solution. Let ak and jk denote, respectively, the number of adult and juvenile females after
k years, so that the total female population is the sum ak + jk. Assumption 1 shows that
jk+1 = 2ak, while assumptions 2 and 3 show that ak+1 =

1
2ak +

1
4 jk. Hence the numbers ak

and jk in successive years are related by the following equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write vk =

[
ak
jk

]
and A =

[ 1
2

1
4

2 0

]
these equations take the matrix form

vk+1 = Avk, for each k = 0, 1, 2, . . .

Taking k = 0 gives v1 = Av0, then taking k = 1 gives v2 = Av1 = A2v0, and taking k = 2
gives v3 = Av2 = A3v0. Continuing in this way, we get

vk = Akv0, for each k = 0, 1, 2, . . .
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Since v0 =

[
a0
j0

]
=

[
100
40

]
is known, finding the population profile vk amounts to

computing Ak for all k ≥ 0. We will complete this calculation in Example 3.3.12 after some
new techniques have been developed.

Let A be a fixed n× n matrix. A sequence v0, v1, v2, . . . of column vectors in Rn is called a
linear dynamical system8 if v0 is known and the other vk are determined (as in Example 3.3.1)
by the conditions

vk+1 = Avk for each k = 0, 1, 2, . . .

These conditions are called a matrix recurrence for the vectors vk. As in Example 3.3.1, they
imply that

vk = Akv0 for all k ≥ 0

so finding the columns vk amounts to calculating Ak for k ≥ 0.
Direct computation of the powers Ak of a square matrix A can be time-consuming, so we adopt

an indirect method that is commonly used. The idea is to first diagonalize the matrix A, that is,
to find an invertible matrix P such that

P−1AP = D is a diagonal matrix (3.8)

This works because the powers Dk of the diagonal matrix D are easy to compute, and Equation
3.8 enables us to compute powers Ak of the matrix A in terms of powers Dk of D. Indeed, we can
solve Equation 3.8 for A to get A = PDP−1. Squaring this gives

A2 = (PDP−1)(PDP−1) = PD2P−1

Using this we can compute A3 as follows:

A3 = AA2 = (PDP−1)(PD2P−1) = PD3P−1

Continuing in this way we obtain Theorem 3.3.1 (even if D is not diagonal).

Theorem 3.3.1
If A = PDP−1 then Ak = PDkP−1 for each k = 1, 2, . . . .

Hence computing Ak comes down to finding an invertible matrix P as in equation Equation 3.8.
To do this it is necessary to first compute certain numbers (called eigenvalues) associated with the
matrix A.

8More precisely, this is a linear discrete dynamical system. Many models regard vt as a continuous function of
the time t, and replace our condition between bk+1 and Avk with a differential relationship viewed as functions of
time.
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Eigenvalues and Eigenvectors

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix

If A is an n×n matrix, a number λ is called an eigenvalue of A if

Ax = λx for some column x 6= 0 in Rn

In this case, x is called an eigenvector of A corresponding to the eigenvalue λ , or a
λ -eigenvector for short.

Example 3.3.2

If A =

[
3 5
1 −1

]
and x =

[
5
1

]
then Ax = 4x so λ = 4 is an eigenvalue of A with

corresponding eigenvector x.

The matrix A in Example 3.3.2 has another eigenvalue in addition to λ = 4. To find it, we
develop a general procedure for any n×n matrix A.

By definition a number λ is an eigenvalue of the n×n matrix A if and only if Ax = λx for some
column x 6= 0. This is equivalent to asking that the homogeneous system

(λ I −A)x = 0

of linear equations has a nontrivial solution x 6= 0. By Theorem 2.4.5 this happens if and only if
the matrix λ I −A is not invertible and this, in turn, holds if and only if the determinant of the
coefficient matrix is zero:

det (λ I −A) = 0

This last condition prompts the following definition:

Definition 3.5 Characteristic Polynomial of a Matrix

If A is an n×n matrix, the characteristic polynomial cA(x) of A is defined by

cA(x) = det (xI −A)

Note that cA(x) is indeed a polynomial in the variable x, and it has degree n when A is an n× n
matrix (this is illustrated in the examples below). The above discussion shows that a number λ is
an eigenvalue of A if and only if cA(λ ) = 0, that is if and only if λ is a root of the characteristic
polynomial cA(x). We record these observations in
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Theorem 3.3.2
Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I −A)x = 0

of linear equations with λ I −A as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 3.3.2 is a routine application of gaussian
elimination, but finding the eigenvalues can be difficult, often requiring computers (see Section 8.5).
For now, the examples and exercises will be constructed so that the roots of the characteristic
polynomials are relatively easy to find (usually integers). However, the reader should not be misled
by this into thinking that eigenvalues are so easily obtained for the matrices that occur in practical
applications!

Example 3.3.3

Find the characteristic polynomial of the matrix A =

[
3 5
1 −1

]
discussed in Example 3.3.2,

and then find all the eigenvalues and their eigenvectors.

Solution. Since xI −A =

[
x 0
0 x

]
−
[

3 5
1 −1

]
=

[
x−3 −5
−1 x+1

]
we get

cA(x) = det
[

x−3 −5
−1 x+1

]
= x2 −2x−8 = (x−4)(x+2)

Hence, the roots of cA(x) are λ1 = 4 and λ2 =−2, so these are the eigenvalues of A. Note
that λ1 = 4 was the eigenvalue mentioned in Example 3.3.2, but we have found a new one:
λ2 =−2.
To find the eigenvectors corresponding to λ2 =−2, observe that in this case

(λ2I −A)x =

[
λ2 −3 −5
−1 λ2 +1

]
=

[
−5 −5
−1 −1

]

so the general solution to (λ2I−A)x = 0 is x = t
[
−1

1

]
where t is an arbitrary real number.

Hence, the eigenvectors x corresponding to λ 2 are x = t
[
−1

1

]
where t 6= 0 is arbitrary.

Similarly, λ1 = 4 gives rise to the eigenvectors x = t
[

5
1

]
, t 6= 0 which includes the

observation in Example 3.3.2.

Note that a square matrix A has many eigenvectors associated with any given eigenvalue λ .
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In fact every nonzero solution x of (λ I −A)x = 0 is an eigenvector. Recall that these solutions
are all linear combinations of certain basic solutions determined by the gaussian algorithm (see
Theorem 1.3.2). Observe that any nonzero multiple of an eigenvector is again an eigenvector,9 and
such multiples are often more convenient.10 Any set of nonzero multiples of the basic solutions of
(λ I −A)x = 0 will be called a set of basic eigenvectors corresponding to λ .

Example 3.3.4

Find the characteristic polynomial, eigenvalues, and basic eigenvectors for

A =

 2 0 0
1 2 −1
1 3 −2


Solution. Here the characteristic polynomial is given by

cA(x) = det

 x−2 0 0
−1 x−2 1
−1 −3 x+2

= (x−2)(x−1)(x+1)

so the eigenvalues are λ1 = 2, λ2 = 1, and λ3 =−1. To find all eigenvectors for λ1 = 2,
compute

λ1I −A =

 λ1 −2 0 0
−1 λ1 −2 1
−1 −3 λ1 +2

=

 0 0 0
−1 0 1
−1 −3 4


We want the (nonzero) solutions to (λ1I −A)x = 0. The augmented matrix becomes 0 0 0 0

−1 0 1 0
−1 −3 4 0

→

 1 0 −1 0
0 1 −1 0
0 0 0 0


using row operations. Hence, the general solution x to (λ1I −A)x = 0 is x = t

 1
1
1

 where t

is arbitrary, so we can use x1 =

 1
1
1

 as the basic eigenvector corresponding to λ1 = 2. As

the reader can verify, the gaussian algorithm gives basic eigenvectors x2 =

 0
1
1

 and

x3 =

 0
1
3
1

 corresponding to λ2 = 1 and λ3 =−1, respectively. Note that to eliminate

fractions, we could instead use 3x3 =

 0
1
3

 as the basic λ3-eigenvector.

9In fact, any nonzero linear combination of λ -eigenvectors is again a λ -eigenvector.
10Allowing nonzero multiples helps eliminate round-off error when the eigenvectors involve fractions.
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Example 3.3.5

If A is a square matrix, show that A and AT have the same characteristic polynomial, and
hence the same eigenvalues.

Solution. We use the fact that xI −AT = (xI −A)T . Then

cAT (x) = det
(
xI −AT)= det

[
(xI −A)T ]= det (xI −A) = cA(x)

by Theorem 3.2.3. Hence cAT (x) and cA(x) have the same roots, and so AT and A have the
same eigenvalues (by Theorem 3.3.2).

The eigenvalues of a matrix need not be distinct. For example, if A =

[
1 1
0 1

]
the characteristic

polynomial is (x− 1)2 so the eigenvalue 1 occurs twice. Furthermore, eigenvalues are usually not
computed as the roots of the characteristic polynomial. There are iterative, numerical methods (for
example the QR-algorithm in Section 8.5) that are much more efficient for large matrices.

A-Invariance

If A is a 2×2 matrix, we can describe the eigenvectors of A geometrically using the following concept.
A line L through the origin in R2 is called A-invariant if Ax is in L whenever x is in L. If we think
of A as a linear transformation R2 → R2, this asks that A carries L into itself, that is the image Ax
of each vector x in L is again in L.

Example 3.3.6

The x axis L =

{[
x
0

]
| x in R

}
is A-invariant for any matrix of the form

A =

[
a b
0 c

]
because

[
a b
0 c

][
x
0

]
=

[
ax
0

]
is L for all x =

[
x
0

]
in L

Lx

x

0 x

y
To see the connection with eigenvectors, let x 6= 0 be any nonzero

vector in R2 and let Lx denote the unique line through the origin con-
taining x (see the diagram). By the definition of scalar multiplication
in Section 2.6, we see that Lx consists of all scalar multiples of x, that
is

Lx = Rx = {tx | t in R}
Now suppose that x is an eigenvector of A, say Ax = λx for some λ

in R. Then if tx is in Lx then
A(tx) = t (Ax) = t(λx) = (tλ )x is again in Lx

That is, Lx is A-invariant. On the other hand, if Lx is A-invariant then Ax is in Lx (since x is in
Lx). Hence Ax = tx for some t in R, so x is an eigenvector for A (with eigenvalue t). This proves:
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Theorem 3.3.3
Let A be a 2×2 matrix, let x 6= 0 be a vector in R2, and let Lx be the line through the
origin in R2 containing x. Then

x is an eigenvector of A if and only if Lx is A-invariant

Example 3.3.7

1. If θ is not a multiple of π, show that A =

[
cosθ −sinθ

sinθ cosθ

]
has no real eigenvalue.

2. If m is real show that B = 1
1+m2

[
1−m2 2m

2m m2 −1

]
has a 1 as an eigenvalue.

Solution.

1. A induces rotation about the origin through the angle θ (Theorem 2.6.4). Since θ is
not a multiple of π, this shows that no line through the origin is A-invariant. Hence A
has no eigenvector by Theorem 3.3.3, and so has no eigenvalue.

2. B induces reflection Qm in the line through the origin with slope m by Theorem 2.6.5.
If x is any nonzero point on this line then it is clear that Qmx = x, that is Qmx = 1x.
Hence 1 is an eigenvalue (with eigenvector x).

If θ = π

2 in Example 3.3.7, then A =

[
0 −1
1 0

]
so cA(x) = x2 + 1. This polynomial has no

root in R, so A has no (real) eigenvalue, and hence no eigenvector. In fact its eigenvalues are the

complex numbers i and −i, with corresponding eigenvectors
[

1
−i

]
and

[
1
i

]
In other words, A

has eigenvalues and eigenvectors, just not real ones.
Note that every polynomial has complex roots,11 so every matrix has complex eigenvalues.

While these eigenvalues may very well be real, this suggests that we really should be doing linear
algebra over the complex numbers. Indeed, everything we have done (gaussian elimination, matrix
algebra, determinants, etc.) works if all the scalars are complex.

11This is called the Fundamental Theorem of Algebra and was first proved by Gauss in his doctoral dissertation.
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Diagonalization

An n×n matrix D is called a diagonal matrix if all its entries off the main diagonal are zero, that
is if D has the form

D =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

= diag (λ1, λ2, · · · , λn)

where λ1, λ2, . . . , λn are numbers. Calculations with diagonal matrices are very easy. Indeed, if
D= diag (λ1, λ2, . . . , λn) and E = diag (µ1, µ2, . . . , µn) are two diagonal matrices, their product DE
and sum D+E are again diagonal, and are obtained by doing the same operations to corresponding
diagonal elements:

DE = diag (λ1µ1, λ2µ2, . . . , λnµn)

D+E = diag (λ1 +µ1, λ2 +µ2, . . . , λn +µn)

Because of the simplicity of these formulas, and with an eye on Theorem 3.3.1 and the discussion
preceding it, we make another definition:

Definition 3.6 Diagonalizable Matrices

An n×n matrix A is called diagonalizable if

P−1AP is diagonal for some invertible n×n matrix P

Here the invertible matrix P is called a diagonalizing matrix for A.

To discover when such a matrix P exists, we let x1, x2, . . . , xn denote the columns of P and
look for ways to determine when such xi exist and how to compute them. To this end, write P in
terms of its columns as follows:

P = [x1, x2, · · · , xn]

Observe that P−1AP = D for some diagonal matrix D holds if and only if

AP = PD

If we write D = diag (λ1, λ2, . . . , λn), where the λi are numbers to be determined, the equation
AP = PD becomes

A [x1, x2, · · · , xn] = [x1, x2, · · · , xn]


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn


By the definition of matrix multiplication, each side simplifies as follows[

Ax1 Ax2 · · · Axn
]
=
[

λ1x1 λ2x2 · · · λnxn
]
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Comparing columns shows that Axi = λixi for each i, so

P−1AP = D if and only if Axi = λixi for each i

In other words, P−1AP = D holds if and only if the diagonal entries of D are eigenvalues of A and
the columns of P are corresponding eigenvectors. This proves the following fundamental result.

Theorem 3.3.4
Let A be an n×n matrix.

1. A is diagonalizable if and only if it has eigenvectors x1, x2, . . . , xn such that the
matrix P =

[
x1 x2 . . . xn

]
is invertible.

2. When this is the case, P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the
eigenvalue of A corresponding to xi.

Example 3.3.8

Diagonalize the matrix A =

 2 0 0
1 2 −1
1 3 −2

 in Example 3.3.4.

Solution. By Example 3.3.4, the eigenvalues of A are λ1 = 2, λ2 = 1, and λ3 =−1, with

corresponding basic eigenvectors x1 =

 1
1
1

 , x2 =

 0
1
1

, and x3 =

 0
1
3

 respectively.

Since the matrix P =
[

x1 x2 x3
]
=

 1 0 0
1 1 1
1 1 3

 is invertible, Theorem 3.3.4 guarantees

that

P−1AP =

 λ1 0 0
0 λ2 0
0 0 λ3

=

 2 0 0
0 1 0
0 0 −1

= D

The reader can verify this directly—easier to check AP = PD.

In Example 3.3.8, suppose we let Q =
[

x2 x1 x3
]

be the matrix formed from the eigen-
vectors x1, x2, and x3 of A, but in a different order than that used to form P. Then Q−1AQ =
diag (λ2, λ1, λ3) is diagonal by Theorem 3.3.4, but the eigenvalues are in the new order. Hence we
can choose the diagonalizing matrix P so that the eigenvalues λi appear in any order we want along
the main diagonal of D.

In every example above each eigenvalue has had only one basic eigenvector. Here is a diagonal-
izable matrix where this is not the case.
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Example 3.3.9

Diagonalize the matrix A =

 0 1 1
1 0 1
1 1 0


Solution. To compute the characteristic polynomial of A first add rows 2 and 3 of xI −A to
row 1:

cA(x) = det

 x −1 −1
−1 x −1
−1 −1 x

= det

 x−2 x−2 x−2
−1 x −1
−1 −1 x


= det

 x−2 0 0
−1 x+1 0
−1 0 x+1

= (x−2)(x+1)2

Hence the eigenvalues are λ1 = 2 and λ2 =−1, with λ2 repeated twice (we say that λ2 has
multiplicity two). However, A is diagonalizable. For λ1 = 2, the system of equations

(λ1I −A)x = 0 has general solution x = t

 1
1
1

 as the reader can verify, so a basic

λ1-eigenvector is x1 =

 1
1
1

.

Turning to the repeated eigenvalue λ2 =−1, we must solve (λ2I −A)x = 0. By gaussian

elimination, the general solution is x = s

 −1
1
0

+ t

 −1
0
1

 where s and t are arbitrary.

Hence the gaussian algorithm produces two basic λ2-eigenvectors x2 =

 −1
1
0

 and

y2 =

 −1
0
1

 If we take P =
[

x1 x2 y2
]
=

 1 −1 −1
1 1 0
1 0 1

 we find that P is invertible.

Hence P−1AP = diag (2, −1, −1) by Theorem 3.3.4.

Example 3.3.9 typifies every diagonalizable matrix. To describe the general case, we need some
terminology.

Definition 3.7 Multiplicity of an Eigenvalue

An eigenvalue λ of a square matrix A is said to have multiplicity m if it occurs m times as
a root of the characteristic polynomial cA(x).

For example, the eigenvalue λ2 = −1 in Example 3.3.9 has multiplicity 2. In that example the
gaussian algorithm yields two basic λ2-eigenvectors, the same number as the multiplicity. This
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works in general.

Theorem 3.3.5
A square matrix A is diagonalizable if and only if every eigenvalue λ of multiplicity m yields
exactly m basic eigenvectors; that is, if and only if the general solution of the system
(λ I −A)x = 0 has exactly m parameters.

One case of Theorem 3.3.5 deserves mention.

Theorem 3.3.6
An n×n matrix with n distinct eigenvalues is diagonalizable.

The proofs of Theorem 3.3.5 and Theorem 3.3.6 require more advanced techniques and are given in
Chapter 5. The following procedure summarizes the method.

Diagonalization Algorithm

To diagonalize an n×n matrix A:

Step 1. Find the distinct eigenvalues λ of A.

Step 2. Compute a set of basic eigenvectors corresponding to each of these eigenvalues λ

as basic solutions of the homogeneous system (λ I −A)x = 0.

Step 3. The matrix A is diagonalizable if and only if there are n basic eigenvectors in all.

Step 4. If A is diagonalizable, the n×n matrix P with these basic eigenvectors as its
columns is a diagonalizing matrix for A, that is, P is invertible and P−1AP is diagonal.

The diagonalization algorithm is valid even if the eigenvalues are nonreal complex numbers. In this
case the eigenvectors will also have complex entries, but we will not pursue this here.

Example 3.3.10

Show that A =

[
1 1
0 1

]
is not diagonalizable.

Solution 1. The characteristic polynomial is cA(x) = (x−1)2, so A has only one eigenvalue
λ1 = 1 of multiplicity 2. But the system of equations (λ1I −A)x = 0 has general solution

t
[

1
0

]
, so there is only one parameter, and so only one basic eigenvector

[
1
2

]
. Hence A is

not diagonalizable.

Solution 2. We have cA(x) = (x−1)2 so the only eigenvalue of A is λ = 1. Hence, if A were

diagonalizable, Theorem 3.3.4 would give P−1AP =

[
1 0
0 1

]
= I for some invertible matrix
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P. But then A = PIP−1 = I, which is not the case. So A cannot be diagonalizable.

Diagonalizable matrices share many properties of their eigenvalues. The following example
illustrates why.

Example 3.3.11

If λ 3 = 5λ for every eigenvalue of the diagonalizable matrix A, show that A3 = 5A.

Solution. Let P−1AP = D = diag (λ1, . . . , λn). Because λ 3
i = 5λi for each i, we obtain

D3 = diag (λ 3
1 , . . . , λ

3
n ) = diag (5λ1, . . . , 5λn) = 5D

Hence A3 = (PDP−1)3 = PD3P−1 = P(5D)P−1 = 5(PDP−1) = 5A using Theorem 3.3.1. This is
what we wanted.

If p(x) is any polynomial and p(λ ) = 0 for every eigenvalue of the diagonalizable matrix A,
an argument similar to that in Example 3.3.11 shows that p(A) = 0. Thus Example 3.3.11 deals
with the case p(x) = x3 − 5x. In general, p(A) is called the evaluation of the polynomial p(x) at
the matrix A. For example, if p(x) = 2x3 −3x+5, then p(A) = 2A3 −3A+5I—note the use of the
identity matrix.

In particular, if cA(x) denotes the characteristic polynomial of A, we certainly have cA(λ ) = 0
for each eigenvalue λ of A (Theorem 3.3.2). Hence cA(A) = 0 for every diagonalizable matrix A.
This is, in fact, true for any square matrix, diagonalizable or not, and the general result is called
the Cayley-Hamilton theorem. It is proved in Section ?? and again in Section ??.

Linear Dynamical Systems

We began Section 3.3 with an example from ecology which models the evolution of the population
of a species of birds as time goes on. As promised, we now complete the example—Example 3.3.12
below.

The bird population was described by computing the female population profile vk =

[
ak
jk

]
of

the species, where ak and jk represent the number of adult and juvenile females present k years
after the initial values a0 and j0 were observed. The model assumes that these numbers are related
by the following equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write A =

[ 1
2

1
4

2 0

]
the columns vk satisfy vk+1 = Avk for each k = 0, 1, 2, . . . .

Hence vk = Akv0 for each k = 1, 2, . . . . We can now use our diagonalization techniques to determine
the population profile vk for all values of k in terms of the initial values.
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Example 3.3.12

Assuming that the initial values were a0 = 100 adult females and j0 = 40 juvenile females,
compute ak and jk for k = 1, 2, . . . .

Solution. The characteristic polynomial of the matrix A =

[ 1
2

1
4

2 0

]
is

cA(x) = x2 − 1
2x− 1

2 = (x−1)(x+ 1
2), so the eigenvalues are λ1 = 1 and λ2 =−1

2 and gaussian

elimination gives corresponding basic eigenvectors
[ 1

2
1

]
and

[
−1

4
1

]
. For convenience, we

can use multiples x1 =

[
1
2

]
and x2 =

[
−1

4

]
respectively. Hence a diagonalizing matrix is

P =

[
1 −1
2 4

]
and we obtain

P−1AP = D where D =

[
1 0
0 −1

2

]
This gives A = PDP−1 so, for each k ≥ 0, we can compute Ak explicitly:

Ak = PDkP−1 =

[
1 −1
2 4

][
1 0
0 (−1

2)
k

]
1
6

[
4 1

−2 4

]
= 1

6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

]

Hence we obtain[
ak
jk

]
= vk = Akv0 =

1
6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

][
100
40

]

= 1
6

[
440+160(−1

2)
k

880−640(−1
2)

k

]

Equating top and bottom entries, we obtain exact formulas for ak and jk:

ak =
220

3 + 80
3

(
−1

2

)k and jk = 440
3 + 320

3

(
−1

2

)k for k = 1, 2, · · ·

In practice, the exact values of ak and jk are not usually required. What is needed is a
measure of how these numbers behave for large values of k. This is easy to obtain here.
Since (−1

2)
k is nearly zero for large k, we have the following approximate values

ak ≈ 220
3 and jk ≈ 440

3 if k is large

Hence, in the long term, the female population stabilizes with approximately twice as many
juveniles as adults.
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Definition 3.8 Linear Dynamical System

If A is an n×n matrix, a sequence v0, v1, v2, . . . of columns in Rn is called a linear
dynamical system if v0 is specified and v1, v2, . . . are given by the matrix recurrence
vk+1 = Avk for each k ≥ 0. We call A the migration matrix of the system.

We have v1 = Av0, then v2 = Av1 = A2v0, and continuing we find

vk = Akv0 for each k = 1, 2, · · · (3.9)

Hence the columns vk are determined by the powers Ak of the matrix A and, as we have seen, these
powers can be efficiently computed if A is diagonalizable. In fact Equation 3.9 can be used to give
a nice “formula” for the columns vk in this case.

Assume that A is diagonalizable with eigenvalues λ1, λ2, . . . , λn and corresponding basic eigen-
vectors x1, x2, . . . , xn. If P =

[
x1 x2 . . . xn

]
is a diagonalizing matrix with the xi as columns,

then P is invertible and
P−1AP = D = diag (λ1, λ2, · · · , λn)

by Theorem 3.3.4. Hence A = PDP−1 so Equation 3.9 and Theorem 3.3.1 give

vk = Akv0 = (PDP−1)kv0 = (PDkP−1)v0 = PDk(P−1v0)

for each k = 1, 2, . . . . For convenience, we denote the column P−1v0 arising here as follows:

b = P−1v0 =


b1
b2
...

bn


Then matrix multiplication gives

vk = PDk(P−1v0)

=
[

x1 x2 · · · xn
]


λ k
1 0 · · · 0

0 λ k
2 · · · 0

... ... . . . ...
0 0 · · · λ k

n




b1
b2
...

bn



=
[

x1 x2 · · · xn
]


b1λ k
1

b2λ k
2...

b3λ k
n


= b1λ

k
1 x1 +b2λ

k
2 x2 + · · ·+bnλ

k
n xn (3.10)

for each k ≥ 0. This is a useful exact formula for the columns vk. Note that, in particular,

v0 = b1x1 +b2x2 + · · ·+bnxn
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However, such an exact formula for vk is often not required in practice; all that is needed is to
estimate vk for large values of k (as was done in Example 3.3.12). This can be easily done if A has
a largest eigenvalue. An eigenvalue λ of a matrix A is called a dominant eigenvalue of A if it has
multiplicity 1 and

|λ |> |µ| for all eigenvalues µ 6= λ

where |λ | denotes the absolute value of the number λ . For example, λ1 = 1 is dominant in Exam-
ple 3.3.12.

Returning to the above discussion, suppose that A has a dominant eigenvalue. By choosing the
order in which the columns xi are placed in P, we may assume that λ1 is dominant among the
eigenvalues λ1, λ2, . . . , λn of A (see the discussion following Example 3.3.8). Now recall the exact
expression for vk in Equation 3.10 above:

vk = b1λ
k
1 x1 +b2λ

k
2 x2 + · · ·+bnλ

k
n xn

Take λ k
1 out as a common factor in this equation to get

vk = λ
k
1

[
b1x1 +b2

(
λ2
λ1

)k
x2 + · · ·+bn

(
λn
λ1

)k
xn

]
for each k ≥ 0. Since λ1 is dominant, we have |λi| < |λ1| for each i ≥ 2, so each of the numbers
(λi/λ1)

k become small in absolute value as k increases. Hence vk is approximately equal to the first
term λ k

1 b1x1, and we write this as vk ≈ λ k
1 b1x1. These observations are summarized in the following

theorem (together with the above exact formula for vk).

Theorem 3.3.7
Consider the dynamical system v0, v1, v2, . . . with matrix recurrence

vk+1 = Avk for k ≥ 0

where A and v0 are given. Assume that A is a diagonalizable n×n matrix with eigenvalues
λ1, λ2, . . . , λn and corresponding basic eigenvectors x1, x2, . . . , xn, and let
P =

[
x1 x2 . . . xn

]
be the diagonalizing matrix. Then an exact formula for vk is

vk = b1λ
k
1 x1 +b2λ

k
2 x2 + · · ·+bnλ

k
n xn for each k ≥ 0

where the coefficients bi come from

b = P−1v0 =


b1
b2
...

bn


Moreover, if A has dominant12eigenvalue λ1, then vk is approximated by

vk = b1λ
k
1 x1 for sufficiently large k.
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Example 3.3.13

Returning to Example 3.3.12, we see that λ1 = 1 is the dominant eigenvalue, with

eigenvector x1 =

[
1
2

]
. Here P =

[
1 −1
2 4

]
and v0 =

[
100
40

]
so P−1v0 =

1
3

[
220
−80

]
.

Hence b1 =
220

3 in the notation of Theorem 3.3.7, so[
ak
jk

]
= vk ≈ b1λ

k
1 x1 =

220
3 1k

[
1
2

]
where k is large. Hence ak ≈ 220

3 and jk ≈ 440
3 as in Example 3.3.12.

This next example uses Theorem 3.3.7 to solve a “linear recurrence.” See also Section ??.

Example 3.3.14

Suppose a sequence x0, x1, x2, . . . is determined by insisting that

x0 = 1, x1 =−1, and xk+2 = 2xk − xk+1 for every k ≥ 0

Find a formula for xk in terms of k.

Solution. Using the linear recurrence xk+2 = 2xk − xk+1 repeatedly gives

x2 = 2x0 − x1 = 3, x3 = 2x1 − x2 =−5, x4 = 11, x5 =−21, . . .

so the xi are determined but no pattern is apparent. The idea is to find vk =

[
xk

xk+1

]
for

each k instead, and then retrieve xk as the top component of vk. The reason this works is
that the linear recurrence guarantees that these vk are a dynamical system:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

2xk − xk+1

]
= Avk where A =

[
0 1
2 −1

]
The eigenvalues of A are λ1 =−2 and λ2 = 1 with eigenvectors x1 =

[
1

−2

]
and x2 =

[
1
1

]
,

so the diagonalizing matrix is P =

[
1 1

−2 1

]
.

Moreover, b = P−1
0 v0 =

1
3

[
2
1

]
so the exact formula for vk is[

xk
xk+1

]
= vk = b1λ

k
1 x1 +b2λ

k
2 x2 =

2
3(−2)k

[
1

−2

]
+ 1

31k
[

1
1

]
Equating top entries gives the desired formula for xk:

xk =
1
3

[
2(−2)k +1

]
for all k = 0, 1, 2, . . .

The reader should check this for the first few values of k.

12Similar results can be found in other situations. If for example, eigenvalues λ1 and λ2 (possibly equal) satisfy
|λ1|= |λ2|> |λi| for all i > 2, then we obtain vk ≈ b1λ k

1 x1 +b2λ k
2 x2 for large k.
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Graphical Description of Dynamical Systems

If a dynamical system vk+1 = Avk is given, the sequence v0, v1, v2, . . . is called the trajectory
of the system starting at v0. It is instructive to obtain a graphical plot of the system by writing

vk =

[
xk
yk

]
and plotting the successive values as points in the plane, identifying vk with the point

(xk, yk) in the plane. We give several examples which illustrate properties of dynamical systems.
For ease of calculation we assume that the matrix A is simple, usually diagonal.

Example 3.3.15

O
x

y
Let A =

[ 1
2 0
0 1

3

]
Then the eigenvalues are 1

2 and 1
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
.

The exact formula is

vk = b1
(1

2

)k
[

1
0

]
+b2

(1
3

)k
[

0
1

]
for k = 0, 1, 2, . . . by Theorem 3.3.7, where the coefficients
b1 and b2 depend on the initial point v0. Several trajectories
are plotted in the diagram and, for each choice of v0,
the trajectories converge toward the origin because both
eigenvalues are less than 1 in absolute value. For this reason,
the origin is called an attractor for the system.

Example 3.3.16

O x

y
Let A =

[ 3
2 0
0 4

3

]
. Here the eigenvalues are 3

2 and 4
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
as

before. The exact formula is

vk = b1
(3

2

)k
[

1
0

]
+b2

(4
3

)k
[

0
1

]
for k = 0, 1, 2, . . . . Since both eigenvalues are greater than
1 in absolute value, the trajectories diverge away from the
origin for every choice of initial point V0. For this reason,
the origin is called a repellor for the system.
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Example 3.3.17

O
x

y
Let A =

[
1 −1

2
−1

2 1

]
. Now the eigenvalues are 3

2 and 1
2 ,

with corresponding eigenvectors x1 =

[
−1

1

]
and x2 =

[
1
1

]
The exact formula is

vk = b1
(3

2

)k
[
−1

1

]
+b2

(1
2

)k
[

1
1

]
for k = 0, 1, 2, . . . . In this case 3

2 is the dominant eigenvalue

so, if b1 6= 0, we have vk ≈ b1
(3

2

)k
[
−1

1

]
for large k and

vk is approaching the line y =−x.

However, if b1 = 0, then vk = b2
(1

2

)k
[

1
1

]
and so approaches

the origin along the line y = x. In general the trajectories
appear as in the diagram, and the origin is called a saddle

point for the dynamical system in this case.

Example 3.3.18

Let A =

[
0 1

2
−1

2 0

]
. Now the characteristic polynomial is cA(x) = x2 + 1

4 , so the eigenvalues

are the complex numbers i
2 and − i

2 where i2 =−1. Hence A is not diagonalizable as a real

matrix. However, the trajectories are not difficult to describe. If we start with v0 =

[
1
1

]
then the trajectory begins as

v1 =

[
1
2

−1
2

]
, v2 =

[
−1

4

−1
4

]
, v3 =

[
−1

8
1
8

]
, v4 =

[
1

16
1

16

]
, v5 =

[
1

32

− 1
32

]
, v6 =

[
− 1

64

− 1
64

]
, . . .

1

1 v0

v1

v2

v3

O
x

y

The first five of these points are plotted in the diagram.
Here each trajectory spirals in toward the origin, so the
origin is an attractor. Note that the two (complex) eigenvalues
have absolute value less than 1 here. If they had absolute
value greater than 1, the trajectories would spiral out from
the origin.
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Google PageRank

Dominant eigenvalues are useful to the Google search engine for finding information on the Web.
If an information query comes in from a client, Google has a sophisticated method of establishing
the “relevance” of each site to that query. When the relevant sites have been determined, they
are placed in order of importance using a ranking of all sites called the PageRank. The relevant
sites with the highest PageRank are the ones presented to the client. It is the construction of the
PageRank that is our interest here.

The Web contains many links from one site to another. Google interprets a link from site j to
site i as a “vote” for the importance of site i. Hence if site i has more links to it than does site j,
then i is regarded as more “important” and assigned a higher PageRank. One way to look at this
is to view the sites as vertices in a huge directed graph (see Section 2.2). Then if site j links to site
i there is an edge from j to i, and hence the (i, j)-entry is a 1 in the associated adjacency matrix
(called the connectivity matrix in this context). Thus a large number of 1s in row i of this matrix
is a measure of the PageRank of site i.13

However this does not take into account the PageRank of the sites that link to i. Intuitively,
the higher the rank of these sites, the higher the rank of site i. One approach is to compute a
dominant eigenvector x for the connectivity matrix. In most cases the entries of x can be chosen
to be positive with sum 1. Each site corresponds to an entry of x, so the sum of the entries of sites
linking to a given site i is a measure of the rank of site i. In fact, Google chooses the PageRank of
a site so that it is proportional to this sum.14

Exercises for 3.3

Exercise 3.3.1 In each case find the character-
istic polynomial, eigenvalues, eigenvectors, and (if
possible) an invertible matrix P such that P−1AP is
diagonal.

A =

[
1 2
3 2

]
a) A =

[
2 −4

−1 −1

]
b)

A =

 7 0 −4
0 5 0
5 0 −2

c) A=

 1 1 −3
2 0 6
1 −1 5

d)

A=

 1 −2 3
2 6 −6
1 2 −1

e) A =

 0 1 0
3 0 1
2 0 0

f)

A=

 3 1 1
−4 −2 −5

2 2 5

g) A =

 2 1 1
0 1 0
1 −1 2

h)

A =

 λ 0 0
0 λ 0
0 0 µ

, λ 6= µi)

b. (x−3)(x+2);3;−2;
[

4
−1

]
,
[

1
1

]
;

P =

[
4 1

−1 1

]
; P−1AP =

[
3 0
0 −2

]
.

13For more on PageRank, visit https://en.wikipedia.org/wiki/PageRank.
14See the articles “Searching the web with eigenvectors” by Herbert S. Wilf, UMAP Journal 23(2), 2002, pages

101–103, and “The worlds largest matrix computation: Google’s PageRank is an eigenvector of a matrix of order 2.7
billion” by Cleve Moler, Matlab News and Notes, October 2002, pages 12–13.

https://en.wikipedia.org/wiki/PageRank
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d. (x−2)3;2;

 1
1
0

 ,

 −3
0
1

; No such P; Not di-

agonalizable.

f. (x + 1)2(x − 2);−1, −2;

 −1
1
2

 ,

 1
2
1

; No

such P; Not diagonalizable. Note that this
matrix and the matrix in Example 3.3.9 have
the same characteristic polynomial, but that
matrix is diagonalizable.

h. (x− 1)2(x− 3);1, 3;

 −1
0
1

 ,

 1
0
1

 No such

P; Not diagonalizable.

Exercise 3.3.2 Consider a linear dynamical sys-
tem vk+1 = Avk for k ≥ 0. In each case approximate
vk using Theorem 3.3.7.

a. A =

[
2 1
4 −1

]
, v0 =

[
1
2

]

b. A =

[
3 −2
2 −2

]
, v0 =

[
3

−1

]

c. A =

 1 0 0
1 2 3
1 4 1

 , v0 =

 1
1
1



d. A =

 1 3 2
−1 2 1

4 −1 −1

 , v0 =

 2
0
1



b. Vk =
7
3 2k

[
2
1

]

d. Vk =
3
2 3k

 1
0
1


Exercise 3.3.3 Show that A has λ = 0 as an eigen-
value if and only if A is not invertible.

Exercise 3.3.4 Let A denote an n×n matrix and
put A1 = A−αI, α in R. Show that λ is an eigen-
value of A if and only if λ −α is an eigenvalue of
A1. (Hence, the eigenvalues of A1 are just those of A

“shifted” by α.) How do the eigenvectors compare?

Ax = λx if and only if (A−αI)x = (λ −α)x. Same
eigenvectors.

Exercise 3.3.5 Show that the eigenvalues of[
cosθ −sinθ

sinθ cosθ

]
are eiθ and e−iθ .

(See Appendix ??)

Exercise 3.3.6 Find the characteristic polynomial
of the n× n identity matrix I. Show that I has ex-
actly one eigenvalue and find the eigenvectors.

Exercise 3.3.7 Given A =

[
a b
c d

]
show that:

a. cA(x) = x2 − tr Ax+ det A, where tr A = a+d is
called the trace of A.

b. The eigenvalues are 1
2

[
(a+d)±

√
(a−d)2 +4bc

]
.

Exercise 3.3.8 In each case, find P−1AP and then
compute An.

a. A =

[
6 −5
2 −1

]
, P =

[
1 5
1 2

]

b. A =

[
−7 −12

6 −10

]
, P =

[
−3 4

2 −3

]
[Hint:

(PDP−1)n = PDnP−1 for each n = 1, 2, . . . .]

b. P−1AP =

[
1 0
0 2

]
, so An = P

[
1 0
0 2n

]
P−1 =[

9−8 ·2n 12(1−2n)
6(2n −1) 9 ·2n −8

]
Exercise 3.3.9

a. If A =

[
1 3
0 2

]
and B =

[
2 0
0 1

]
verify that

A and B are diagonalizable, but AB is not.

b. If D =

[
1 0
0 −1

]
find a diagonalizable matrix

A such that D+A is not diagonalizable.

b. A =

[
0 1
0 2

]
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Exercise 3.3.10 If A is an n×n matrix, show that
A is diagonalizable if and only if AT is diagonaliz-
able.

Exercise 3.3.11 If A is diagonalizable, show that
each of the following is also diagonalizable.

a. An, n ≥ 1

b. kA, k any scalar.

c. p(A), p(x) any polynomial (Theorem 3.3.1)

d. U−1AU for any invertible matrix U .

e. kI +A for any scalar k.

b. and d. PAP−1 = D is diagonal, then
b. P−1(kA)P = kD is diagonal, and d.
Q(U−1AU)Q = D where Q = PU .

Exercise 3.3.12 Give an example of two diago-
nalizable matrices A and B whose sum A+B is not
diagonalizable.[

1 1
0 1

]
is not diagonalizable by Example 3.3.8.

But
[

1 1
0 1

]
=

[
2 1
0 −1

]
+

[
−1 0

0 2

]
where[

2 1
0 −1

]
has diagonalizing matrix P =

[
1 −1
0 3

]
and

[
−1 0

0 2

]
is already diagonal.

Exercise 3.3.13 If A is diagonalizable and 1 and
−1 are the only eigenvalues, show that A−1 = A.

Exercise 3.3.14 If A is diagonalizable and 0
and 1 are the only eigenvalues, show that A2 = A.

We have λ 2 = λ for every eigenvalue λ (as λ = 0, 1)
so D2 = D, and so A2 = A as in Example 3.3.9.

Exercise 3.3.15 If A is diagonalizable and λ ≥ 0
for each eigenvalue of A, show that A = B2 for some
matrix B.

Exercise 3.3.16 If P−1AP and P−1BP are both
diagonal, show that AB = BA. [Hint: Diagonal ma-
trices commute.]

Exercise 3.3.17 A square matrix A is called nilpo-
tent if An = 0 for some n ≥ 1. Find all nilpotent
diagonalizable matrices. [Hint: Theorem 3.3.1.]

Exercise 3.3.18 Let A be any n× n matrix and
r 6= 0 a real number.

a. Show that the eigenvalues of rA are precisely
the numbers rλ , where λ is an eigenvalue of
A.

b. Show that crA(x) = rncA
( x

r

)
.

b. crA(x) = det [xI − rA]
= rn det

[ x
r I −A

]
= rncA

[ x
r

]
Exercise 3.3.19

a. If all rows of A have the same sum s, show that
s is an eigenvalue.

b. If all columns of A have the same sum s, show
that s is an eigenvalue.

Exercise 3.3.20 Let A be an invertible n×n ma-
trix.

a. Show that the eigenvalues of A are nonzero.

b. Show that the eigenvalues of A−1 are precisely
the numbers 1/λ , where λ is an eigenvalue of
A.

c. Show that cA−1(x) = (−x)n

det A cA
(1

x

)
.

b. If λ 6= 0, Ax = λx if and only if A−1x = 1
λ

x.
The result follows.

Exercise 3.3.21 Suppose λ is an eigenvalue of a
square matrix A with eigenvector x 6= 0.

a. Show that λ 2 is an eigenvalue of A2 (with the
same x).

b. Show that λ 3 −2λ +3 is an eigenvalue of
A3 −2A+3I.

c. Show that p(λ ) is an eigenvalue of p(A) for
any nonzero polynomial p(x).
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b. (A3 − 2A − 3I)x = A3x − 2Ax + 3x = λ 3x −
2λx+3x = (λ 3 −2λ −3)x.

Exercise 3.3.22 If A is an n×n matrix, show that
cA2(x2) = (−1)ncA(x)cA(−x).

Exercise 3.3.23 An n×n matrix A is called nilpo-
tent if Am = 0 for some m ≥ 1.

a. Show that every triangular matrix with zeros
on the main diagonal is nilpotent.

b. If A is nilpotent, show that λ = 0 is the only
eigenvalue (even complex) of A.

c. Deduce that cA(x) = xn, if A is n×n and nilpo-
tent.

b. If Am = 0 and Ax = λx, x 6= 0, then A2x =
A(λx) = λAx = λ 2x. In general, Akx = λ kx
for all k ≥ 1. Hence, λ mx = Amx = 0x = 0, so
λ = 0 (because x 6= 0).

Exercise 3.3.24 Let A be diagonalizable with real
eigenvalues and assume that Am = I for some m ≥ 1.

a. Show that A2 = I.

b. If m is odd, show that A = I. [Hint: Theo-
rem ??]

a. If Ax = λx, then Akx = λ kx for each k. Hence
λ mx = Amx = x, so λ m = 1. As λ is real,
λ = ±1 by the Hint. So if P−1AP = D is di-
agonal, then D2 = I by Theorem 3.3.4. Hence
A2 = PD2P = I.

Exercise 3.3.25 Let A2 = I, and assume that A 6= I
and A 6=−I.

a. Show that the only eigenvalues of A are λ = 1
and λ =−1.

b. Show that A is diagonalizable. [Hint: Verify
that A(A+ I) = A+ I and A(A− I) = −(A− I),
and then look at nonzero columns of A+ I and
of A− I.]

c. If Qm : R2 → R2 is reflection in the line y = mx
where m 6= 0, use (b) to show that the matrix
of Qm is diagonalizable for each m.

d. Now prove (c) geometrically using Theo-
rem 3.3.3.

Exercise 3.3.26 Let A =

 2 3 −3
1 0 −1
1 1 −2

 and B = 0 1 0
3 0 1
2 0 0

. Show that cA(x) = cB(x) = (x+1)2(x−

2), but A is diagonalizable and B is not.

Exercise 3.3.27

a. Show that the only diagonalizable matrix A
that has only one eigenvalue λ is the scalar
matrix A = λ I.

b. Is
[

3 −2
2 −1

]
diagonalizable?

a. We have P−1AP = λ I by the diagonalization
algorithm, so A = P(λ I)P−1 = λPP−1 = λ I.

b. No. λ = 1 is the only eigenvalue.

Exercise 3.3.28 Characterize the diagonalizable
n×n matrices A such that A2 −3A+2I = 0 in terms
of their eigenvalues. [Hint: Theorem 3.3.1.]

Exercise 3.3.29 Let A =

[
B 0
0 C

]
where B and C

are square matrices.

a. If B and C are diagonalizable via Q and R (that
is, Q−1BQ and R−1CR are diagonal), show that

A is diagonalizable via
[

Q 0
0 R

]

b. Use (a) to diagonalize A if B =

[
5 3
3 5

]
and

C =

[
7 −1

−1 7

]
.



200 Determinants and Diagonalization

Exercise 3.3.30 Let A =

[
B 0
0 C

]
where B and C

are square matrices.

a. Show that cA(x) = cB(x)cC(x).

b. If x and y are eigenvectors of B and C, respec-

tively, show that
[

x
0

]
and

[
0
y

]
are eigen-

vectors of A, and show how every eigenvector
of A arises from such eigenvectors.

Exercise 3.3.31 Referring to the model in Ex-
ample 3.3.1, determine if the population stabilizes,
becomes extinct, or becomes large in each case. De-
note the adult and juvenile survival rates as A and
J, and the reproduction rate as R.

R A J

a. 2 1
2

1
2

b. 3 1
4

1
4

c. 2 1
4

1
3

d. 3 3
5

1
5

b. λ1 = 1, stabilizes.

d. λ1 =
1

24(3+
√

69) = 1.13, diverges.

Exercise 3.3.32 In the model of Example 3.3.1,
does the final outcome depend on the initial popu-
lation of adult and juvenile females? Support your
answer.

Exercise 3.3.33 In Example 3.3.1, keep the same
reproduction rate of 2 and the same adult survival
rate of 1

2 , but suppose that the juvenile survival rate
is ρ. Determine which values of ρ cause the popula-
tion to become extinct or to become large.

Exercise 3.3.34 In Example 3.3.1, let the ju-
venile survival rate be 2

5 and let the reproduc-
tion rate be 2. What values of the adult survival
rate α will ensure that the population stabilizes?

Extinct if α < 1
5 , stable if α = 1

5 , diverges if α > 1
5 .
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Supplementary Exercises for Chapter 3

Exercise 3.1 Show that

det

 a+ px b+qx c+ rx
p+ux q+ vx r+wx
u+ax v+bx w+ cx

=(1+x3) det

 a b c
p q r
u v w


Exercise 3.2

a. Show that (Ai j)
T = (AT ) ji for all i, j, and all

square matrices A.

b. Use (a) to prove that det AT = det A. [Hint:
Induction on n where A is n×n.]

b. If A is 1×1, then AT =A. In general, det [Ai j] =
det

[
(Ai j)

T
]
= det

[
(AT ) ji

]
by (a) and induc-

tion. Write AT =
[
a′i j

]
where a′i j = a ji, and

expand det AT along column 1.

det AT =
n

∑
j=1

a′j1(−1) j+1 det [(AT ) j1]

=
n

∑
j=1

a1 j(−1)1+ j det [A1 j] = det A

where the last equality is the expansion of
det A along row 1.

Exercise 3.3 Show that det
[

0 In

Im 0

]
= (−1)nm

for all n ≥ 1 and m ≥ 1.

Exercise 3.4 Show that

det

 1 a a3

1 b b3

1 c c3

= (b−a)(c−a)(c−b)(a+b+ c)

Exercise 3.5 Let A =

[
R1
R2

]
be a 2 × 2 matrix

with rows R1 and R2. If det A = 5, find det B where

B =

[
3R1 +2R3
2R1 +5R2

]

Exercise 3.6 Let A =

[
3 −4
2 −3

]
and let vk = Akv0

for each k ≥ 0.

a. Show that A has no dominant eigenvalue.

b. Find vk if v0 equals:

i.
[

1
1

]
ii.

[
2
1

]
iii.

[
x
y

]
6=
[

1
1

]
or

[
2
1

]



3.3. Diagonalization and Eigenvalues 453


	2 Matrix Algebra
	2.1 Matrix Addition, Scalar Multiplication, and Transposition
	2.2 Matrix-Vector Multiplication
	2.3 Matrix Multiplication
	2.4 Matrix Inverses
	2.5 Elementary Matrices
	2.6 Linear Transformations
	2.7 LU-Factorization


